Brookhaven
National Laboratory

Front-end Application Specific Integrated Circuits (ASICs) in 65 nm CMOS for Charge and Light Readout

Prashansa Mukim, Grzegorz Deptuch, Gabriella Carini, Hucheng Cheng, Shanshan Gao, Dominik Gorni, Jay Hyun Jo, Lingyun Ke, Steven Kettel, Soumyajit Mandal, Xin Qian, Sergio Rescia, Vladimir Tishchenko, Chao Zhang

Status of Front-end ASICs

Brookhaven
National Laboratory

3 ASICs vs. 1 ASIC solution:

- Initially two readout options were proposed:
- 3 ASICs vs. 1 ASIC
(idea of building 1 ASIC, combining FE/ADC/transmission brought in 2016 and included as parallel path of development)
- Evolutionary development MiCroBooNE DUNE led to the 3 ASIC solution that:
- Helped perfect the FE (through multiple iterations)
- Allowed debugging (procedure for ADC calibration)
- Allowed optimization

> Currently in development: CHAMPS
> (CHarge AMPlifer + Shaper -> LArASIC translated to $65 \mathrm{~nm}+$ additional features)

Targets for CHAMPS

Experiment	Temperature	Detector Capacitance	Shaping Time	Noise	Dynamic Range
DUNE FD 3/4 charge readout	$89 \mathrm{~K}-300 \mathrm{~K}$	$150 \mathrm{pF}-$ 200 pF	$250 \mathrm{~ns}-$ $2 \mu \mathrm{~s}$	$500 \mathrm{e}^{-}$at 87 K	10 bits
nEXO light readout	$160 \mathrm{~K}-300 \mathrm{~K}$	5 nF	$1 \mu \mathrm{~s}$	$0.1 \mathrm{pe}-\mathrm{at}$ 160 K	10 bits
PIONEER	$160 \mathrm{~K}-300 \mathrm{~K}$	20 pF	20 ns	$570 \mathrm{e}^{-}$at 160 K	10 bits

Brookhaven
National Laboratory

Planned specifications

LArASIC (P5B)

Technology	180 nm CIMOS - 1-poly, 6-metal, MHM cap, sil blk resistors				
Supply Voltage	1.8 V				
Temperature Range	$77-300 \mathrm{~K}$				
Number of Channels	16				
Max Single-Ended Output Swing	1.4 V peak to peak ($0.2-1.6 \mathrm{~V}$)				
Gain Selection (mV/FC)	4.7	7.8		14	25
Full-Scale Input Charge (fC)	300	180		100	56
Baseline selection	200 mV (collection mode) 90			900 mV (induction mode)	
Charge Preamplifier Polarity	Negative (collection mode)		Bipolar (induction mode)		
Adaptive-Reset Current Selection (nA)	0.1	0.5		1	5
Shaper Peaking Time Selection ($\mu \mathrm{S}$)	0.5	1		2	3
Output Coupling	AC (100μ s HPF time-constant)			DC	
Output Selection	Shaper		SE buffer		SEDC buffer
Total Channel Settings	1024				
Integrated Test Capacitor	200 fF				
Temperature Sensor	$0.8728 \mathrm{~V} @ 25^{\circ} \mathrm{C}+2.868 \mathrm{mV} /{ }^{\circ} \mathrm{C}$				
Integrated Pulse Generator	6-bit DAC based				
Configuration Control	SPI interface with 144 register bits				

CHAMPS250

65 nm CMOS: 1-poly, 9-metal	65 nm CMOS: 1-poly, 9-metal
\checkmark	\checkmark
$250 \mathrm{~ns}-2 \mu \mathrm{~s}$	$10 \mathrm{~ns}-250 \mathrm{~ns}$
\checkmark	\checkmark
\checkmark	\checkmark
TBD	TBD
TBD	tBd
\checkmark	\checkmark
\checkmark	\checkmark
${ }^{12} \mathrm{C}$ interface	$1^{2} \mathrm{C}$ interface

LArASIC - status

LArASIC MPW met all the DUNE requirements \rightarrow fabricated ~ 1800 P5 and 1800 P5B (180 nm) chips (eng. run) for ProtoDUNE II

LArASIC performance with differential interface

250 wafers LArASIC production run for DUNE 75k P5 and 75k P5B chips

8" wafer with 610
LArASICs P5 and
Brookhaven
National Laboratory

Measured characteristics (LArASIC P5)

Charge gain $=9,900 \mathrm{mV}$ baseline, $500 \mathrm{pA}, T_{p}=2 \mu \mathrm{~s}, \mathrm{ADC} 16$-bit mode

Measured characteristics (LArASIC P5)

High Linearity

Low Crosstalk

CHAMPS status \& overview

- Input charge converted to output voltage
- Output voltage amplitude proportional to particle energy

Schematic level design in 65 nm completed with 3 mW power consumption

Brookhaven
National Laboratory

Circuit implementation

Schematic level design in 65 nm completed with 3 mW power consumption and programmable shaping times of $250 \mathrm{~ns}, 500 \mathrm{~ns}, 1 \mu \mathrm{~s}$ and $2 \mu \mathrm{~s}$

National Laboratory

Charge Sensitive Amplifier design

- Charge amplifiers use current-mirror based adaptive continuous reset
- A_{1} and A_{2} : 3-stage amplifiers (> 100 dB gain each, bandwidths of 10 MHz and $20-50 \mathrm{MHz}$)
- Pole zero cancellation ($C_{f} R_{f}=C_{z} R_{z}$) ensures fast $I_{\text {csa1 }}$ pulse and prevents baseline drift

$$
I_{c s a 1}(s)=\underbrace{I_{i n}(s) \frac{R_{f 1}}{\left(1+s C_{f 1} R_{f 1}\right)}}_{V_{\text {csa1 }}} \frac{\left(1+s C_{z 1} R_{z 1}\right)}{\int R_{z 1}}
$$

- $C_{z 1}=20 C_{f 1}, R_{z 1}=(1 / 20) R_{f 1}$, charge gain provided by CSA $_{1}=20$
- $\mathrm{C}_{\mathrm{z} 1}=(3$ or 5 or 9 or 16$) \mathrm{C}_{\mathrm{f} 1}, \mathrm{R}_{\mathrm{z} 1}=(1 / 3$ or $1 / 5$ or $1 / 9$ or $1 / 20) \mathrm{R}_{\mathrm{f} 1}$, charge gain (programmable) provided by $\mathrm{CSA}_{2}=3$ or 5 or 9 or 16

CSA $_{1}$ and CSA $_{2}$ charge multiplication check

CSA $_{2}$ reset current subtraction

- Reset Quiescent Current (RQI) subtraction for CSA_{2} to be implemented in CHAMPS
- Prevents propagation of leakage current and corresponding baseline shift
- To be made programmable (2-3 bits) with digital assistance independently for each channel
- Suitable for applications that have high leakage current and involve DC coupling

Shaper design

$$
V_{s 1}(s)=I_{c s a 2}(s) \frac{R_{1}}{\left(1+s C_{1} R_{1}\right)}
$$

$$
V_{s 2}(s)=V_{s 1}(s) \frac{\frac{1}{R_{21} R_{41} C_{21} C_{31}}}{s^{2}+s\left(\frac{1}{R_{21} C_{21}}+\frac{1}{R_{31} C_{31}}+\frac{1}{R_{41} C_{21}}\right)+\frac{1}{R_{31} R_{41} C_{21} C_{31}}}
$$

National Laboratory

- Implemented shaper is a $5^{\text {th }}$ order semi-gaussian filter with complex conjugate poles
- $\mathrm{V}_{\text {csa2 }}$ output is a fast pulse, poses stringent requirements on peak capturing circuit (must be fast and accurate)
- Shaper slows down the variations near signal peak
- (Nearly) equal rise and fall times maximize the output signal amplitude for a given pulse duration

Noise minimization strategy

$$
E N C^{2}=\left(C_{d}+C_{i n}\right)^{2}\left(A_{w} v_{n}^{2} \frac{1}{T_{p}}+A_{f} K_{f}\right)+A_{p} i_{n}^{2} T_{p}
$$

(Sum of white series noise, 1/f series noise and parallel noise components)

Input stage transistors for A_{1} implemented using thick oxide (2.5 V) devices in 65 nm to limit leakage current and associated parallel noise

$$
\begin{gathered}
E N C_{f}^{2}=K_{f} \frac{\left(C_{d}+C_{g}\right)^{2}}{C_{g}} N_{f} \Rightarrow C_{g}=C_{d} \\
E N C_{w}^{2}=4 k_{B} \operatorname{Tn\gamma } \alpha_{w} \frac{\left(C_{d}+C_{g}\right)^{2}}{g_{m}\left(C_{g}\right)} N_{f} \Rightarrow C_{g}=\frac{1}{3} C_{d}
\end{gathered}
$$

Input stage transistor sized to have $\mathrm{C}_{\mathrm{g}} \sim 40 \mathrm{pF}$, optimal choice for minimizing noise with $\mathrm{C}_{\text {det }} \sim 150 \mathrm{pF}$ with given power budget

	Minimum allowable transistor length	Input transistor length	Input transistor width
$\mathbf{1 8 0} \mathbf{n m}$	180 nm	270 nm	20 mm
$\mathbf{6 5 n m}$	280 nm	400 nm	24 mm

Noise in 65 nm (simulated) about 10% lower than 180 nm

Transient responses

Variable charge gain (3, 5, 9, 16)

Variable peaking time ($250 \mathrm{~ns}, 500 \mathrm{~ns}, 1 \mu \mathrm{~s}, 2 \boldsymbol{\mu}$)

Linearity characteristics

Shaper response for charge gain $=3, T_{p}=1 \mu \mathrm{~s}$
Output amplitude Vs. input charge

National Laboratory

Plan for CHAMPS10 ($10 \mathrm{~ns} \leq \mathrm{T}_{\mathrm{p}} \leq 250 \mathrm{~ns}$)

- Limited bandwidth of A_{1} and A_{2} disallows shaping times < 250 ns
- Currently, amplifiers A_{1} and A_{2} implemented as 3-stage amplifiers
- Difficult to achieve higher bandwidth without sacrificing stability
- CHAMPS10 will incorporate topology modification for A_{1} and A_{2}

Transient response for variable input charge (50 fC
-300 fC) with $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ modeled as ideal VCVS

Thank you

