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Low Gain Avalanche Diode
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● The low gain avalanche detector (LGAD) is the state-of-the-art technology in time 

measurement for charge particles, with the following features:

○ A highly doped p+ avalanche region is implanted under the n+ layer.

○ Provide moderate internal gain of 5 to 50 ⇒  can be used for small signal detector 

(low energy X-rays). 

○ Active thickness of 20 to 50 um ⇒ fast collection time, high frame rate capability.

○ Exceptional timing resolution (20 ps or better) before high dose irradiation for 

MIPs.
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The SSRL Testbeam Setup
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LGAD Tested Samples
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Device Active Thickness [um] Gain Layer Breakdown [V]

HPK LGAD type 3.1 50 shallow ~230

HPK LGAD type 3.2 50 deep ~130

HPK PiN 50 No gain ~400

BNL LGAD 20 shallow ~100

● Tested 1 PiN device, 3 LGAD types.

● All Devices are single pad with active area of 1.3x1.3 mm2.

● Two implant depths of the gain layer: shallow ~1um, deep ~2um.

HPK
Device

BNL
Device



The SSRL Testbeam Setup
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● The Stanford Synchrotron Radiation Lightsource (SSRL) 11-2 beamline:
○ X-rays energy: 

■ 5 to 70 keV
■ Energy resolution of ΔE/E ≈10-4

■ Monochromator to filter harmonics
○ Beam structure:

■ Spot size 25mm x 1mm
■ 4 groups of 70 bunches

● 10 ps length (RMS)
● Separated by 2.1 ns

● All measurements were performed at room temperature.



The SSRL Testbeam Setup
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● Data acquisition:

X-rays 
beam LGAD

Analog 
signal 2GHz BW, 

470Ω TIA 
on PCB

G=10 
voltage 
amplifier

Digitize with Keysight 
UXR 13GHZ 128 GS/s 
oscilloscope

1 SSRL orbit 70 bunches

Time reference 
synced with 
beam trigger
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9



X-rays Energy Estimation
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● The signal maximum (peak) is used as estimator for X-rays energy. 
○ Baseline correction from [1] is applied to reduce fluctuation from amplification circuit.
○ Signal peak at least > 7σ

noise
○ Time separation between adjacent peaks at least 2.1 ns

● Using mean(𝜇) and width(σ) of the Gaussian fit to the peaks distribution:
○ Energy : 𝜇
○ Resolution: σ/𝜇

Interval for 
noise 
estimation

Signal from different 
bunches Base energy

30 keV 

Harmonic
60 keV

Example distribution for 30 keV X-rays
HPK 3.1 at 200V



X-rays Energy Linearity
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● The 𝜇 is extracted for each energy, bias voltage, and sensor type.
● The relation of 𝜇 to X-rays energy is shown below: 



X-rays Energy Resolution
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● The energy resolution (σ/𝜇) of LGADs for each of the tested X-rays energies 
are shown:
○ The energy resolution is approximately constant over the  energy range.
○ The energy resolution degrades at higher gains.

PiN

150V
Low gain

200V 
Moderate gain

230V
High gain



Timing Performance
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Time Resolution
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● The major timewalk effect from photon absorption at different depth inside the 
sensor contributes to the time resolution.

● Constant fraction discriminator (CFD) at 20% is used for timing.
○ The fast rising edge of the initial carrier drift is more stable and precise. 

N+ N+

Time walk due 
to the delay of 
avalanche 
process

X-rays absorption front vs back



Time Resolution
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● The major timewalk effect from photon absorption at different depth inside the 
sensor contributes to the time resolution.

● Constant fraction discriminator (CFD) at 20% is used for timing.
○ The fast rising edge of the initial carrier drift is more stable and precise. 

TCAD Simulation of PiN and LGAD Signal for different absorption depth.  E = 20keV 

PiN
50um

LGAD
50um



Time Resolution
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● The major timewalk effect from photon absorption at different depth inside the 
sensor contributes to the time resolution.

● Constant fraction discriminator (CFD) at 20% is used for timing.
○ The fast rising edge of the initial carrier drift is more stable and precise. 

● Time difference with respect to the reference time is calculated for each bunch
○ The bunch separation of 2.1 ns is accounted.

Time Resolution 
122 ps



X-rays Energy Resolution
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● LGAD bulk E-field is usually high enough to saturated the carrier drift velocity 
(1x107 cm/s).

● Assuming photon absorption is approximately equally probable, the time 
resolution due to timewalk is :
○ 50um is  ~125 ps, 20um is ~50 ps



High Repetition Rate Capability
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● The LGAD charge collection time is extremely fast due to thick active 
thickness and saturated carrier drift velocity.

● resolve 500 MHz repetition rate (with capability up to 1GHz).

Overlay of 1k waveform events
in a given time window
BNL 20 um thick LGAD
X-ray energy 30 keV   

2.1 ns bunch separation



Gain Suppression
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Gain Suppression
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● The gain of LGAD for conventional MiP like charge particles is different in the case 
of X-rays.

● The gain of LGAD is measured in reference to the PiN device in the laboratory.
● TCAD simulation is used to study the MiP-like vs X-rays-like deposition.
● Same device and operation voltage is used.

TCAD 
simulation

Measured



Gain Suppression
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● One possible explanation to this is related to the generated e-h density and the 
gain layer E-field relaxation process.

N+

Initial Deposition from X-rays

N+

Charge cloud drift toward 
gain layer. Shape expand due 
to diffusion

Avalanche process starts for 
the first portion of the charge 
cloud.



Gain Suppression
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● One possible explanation to this is related to the generated e-h density and the 
gain layer E-field relaxation process.

● This variation of E-field depends on the generated e-h paris density per unit 
distance.

● MiP generates less e-h paris per unit distance comparing to point-like X-rays 
deposition.

Snapshot of the electric field 
within the gain layer at different 
time for localized input charge.

Recovery (relaxation) time

Note: the impact ionization has 
exponential dependence on the 
field. 

TCAD 
simulation
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Summary
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● The SSRL testbeam results for LGADs were shown:

○ Energy resolution is between 6% to 20%, and out performing 

conventional PiN devices (and better SNR).

○ Time resolution is between 50 to 200 ps. (depends on thickness)

○ Easily resolve 500 MHz repetition rate of the X-rays beam line.

● The gain of LGADs depends on the type of energy deposition. The gain is 

lower for X-rays in comparison to MiP.

35 keV X-rays



Future Developments
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● Standard LGAD has several known limitations, one of which is the 

granularity which is limited to mm scale.

● X-rays imaging application requires um level spatial resolution.

Possible solution with improved LGAD design:

AC-coupled (RSD) LGAD Deep junction LGAD (DJ-LGAD)
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High Repetition Rate
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● Frame rate capability is lower for thicker LGAD (50um)
● It’s still capable to fully resolve 500MHz frame rate.

Overlay of 1k waveform events
in a selected time window

50um thick
X-ray 30keV   



GEANT4 Simulation 
of X-rays Absorption Location
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● GEANT4 simulation of the X-rays absorption location.



Gain Suppression
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● One possible explanation to this is related to the generated e-h density and the 
gain layer E-field relaxation process.

● This variation of E-field depends on the generated e-h paris density per unit 
distance.

● MiP generates less e-h paris per unit distance comparing to point-like X-rays 
deposition.

1) charge arrived at the 
gain layer at later time see 
a relatively lower field due 
to the previous impact 
ionization process. 
–> gain suppression

2) Faster recovery time 
should reduce the gain 
suppression effects.

Note: same e-h 
density per unit 
distance is used 
for localized and 
track deposition.



Tmax vs Pmax &
Averaged Waveform
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● Correlation plots of the Tmax vs Pmax


