

FTBF Time of Flight Upgrade

Joe Pastika¹, Evan Angelico², Henry Frisch³, Ian Goldberg³, Jinseo Park³, Cameron Poe³, Paul Rubinov¹ CPAD 2023

1: Fermilab, 2: Stanford University, 3: Enrico Fermi Institute, U. Chicago

Introduction to FTBF

- Fermilab Test Beam Facility (FTBF) Supports a wide program of research and detector R&D
 - 2 Beamlines can provide particles from 120 GeV protons to secondaries of ~200 MeV to 60 GeV
 - Beam is normally available ~9 months a year (roughly October through June)
 - Major delays in FY24 beam delivery, no beam in FTBF before March, 2024
- Existing Particle ID using PMT TOF system and Cherenkov detectors
- PID is crucial for testing modern particle detectors
- Large Area Picosecond Photodetector (LAPPD) based time of flight detector under development for FTBF

Where is FTBF?

FTBF – Meson Detector Building

‡ Fermilab

FTBF Beamline Details

- 4 second beam spill every 60 seconds, available 24/7
- ~1000 to 900,000 particles per spill
- **MTest**
 - 120 GeV primary protons
 - 1-66 GeV secondary beam
 - ~2cm spot size
 - 1-4 week runs
- **MCenter**
 - Secondary beam
 - Two tertiary beamlines down to 200 MeV
 - longer term experiments

Facility Layout

• MTest and MCenter beamline enclosures

N. J. Pastika CPAD 2023

‡ Fermilab

Beam Performance – MTest

Table with energies, beam spread, percentages: http://ftbf.fnal.gov/mtest-beam-details-2/

Studies by E. Skup and D. Jensen

N. J. Pastika CPAD 2023

e+

pions

p and K

PID Options - MTest

- Current PID options
 - Cherenkov
 - Used by several groups a year, Limited to threshold counting
 - TOF system
 - Rarely used, difficult to set up

Time-of-flight particle ID measurement principle

Single particle TOF $\Delta t = d/\beta$ $\Delta t = d\sqrt{1 + \frac{m^2}{p^2}}$ $\Delta t = \frac{dE}{p}$

TOF difference of two particles

$$\begin{split} \tau_{12} &= \Delta t_1 - \Delta t_2 \\ &= d \Big(\sqrt{1 + m_1^2 / p_1^2} - \sqrt{1 + m_2^2 / p_2^2} \Big) \\ \tau_{12} &\approx \frac{d}{2p^2} (m_1^2 - m_2^2) \\ \text{when relativistic and p1=p2)} \end{split}$$

N. J. Pastika CPAD 2023

LAPPD Photodetection Principle

Large Area Picosecond Photodetector

Gen 2 LAPPD single ended stripline readout

🚰 Fermilab

Gen 2 LAPPD in dark box

N. J. Pastika

I. Goldberg

‡ Fermilab

Data acquisition

- LAPPD signals digitized with PSEC4 ASIC
 - 10 GSPS, 256 sample, 12 bit ADC
 - Self trigger
 - 6 channels per chip
 - See J. Park's talk and [1]
- ACDC Rev C front end card hosts 5 PSEC4 chips
- ANNIE Central Cards aggregate data from ACDC cards and transmit to DAQ computers
- Integrate with OTSDAQ

🚰 Fermilab

9 Nov 2023

[1] E. Oberla et al. https://doi.org/10.1016/j.nima.2013.09.042

White rabbit (WR) time synchronization

- Worked easily out of the box
- 5-10 ps relative timing at kilometers separation
- Each ACDC receives a 250 MHz sine wave, a 100 MHz sync signal, and 1Hz sync signal from WR system

Raw gen 2 LAPPD data

Reconstruction Techniques

- Position transverse to striplines
 - Gaussian fit to max adc measurement for each channel

- Longitudinal position, measure time difference between prompt and reflected peak
 - Method 1: LanGauss fits
 - Method 2: Least squares with shifted waveform (C. Poe)

🚰 Fermilab

Results from Gen 2 LAPPDs

Proposed TOF system layout in MTest

Expected sensitivity

- Projected sensitivity based on calculations and measurements by E. Angelico
- Informs we want at least 40 m separation

Angelico, Evan. doi:10.2172/1637600

	$\sigma_L/\sqrt{N_{ m pe}}$ PE spread	$\sigma_{ m pulse}$ readout	$\sigma_{ m WR}$ Inter station timing	$\sigma_{ m tof}$	Maximum π/K mo- mentum at 5 m / 45 m
Gen 1 LAPPD	55 ps / $\sqrt{30}$	$7 \mathrm{\ ps}$	$5 \mathrm{ps}$	$19 \mathrm{\ ps}$	$7.0 / 21 \; {\rm GeV/c}$
Use of fused silica window	55 ps / $\sqrt{200}$	$7 \mathrm{\ ps}$	$5 \mathrm{\ ps}$	$14 \mathrm{\ ps}$	$8.2 \ / \ 25 \ {\rm GeV/c}$
Low-jitter WR-ZEN	55 ps / $\sqrt{200}$	$7 \mathrm{\ ps}$	< 0.5 ps	$13 \mathrm{\ ps}$	$8.5 \ / \ 25 \ {\rm GeV/c}$
10 μm pores and higher	10 ps / $\sqrt{200}$	$7 \mathrm{\ ps}$	< 0.5 ps	11 ps	$9.2 / 28 \ {\rm GeV/c}$
cathode voltages					
PSEC4_chip development	10 ps / $\sqrt{200}$	$1 \mathrm{ps}$	< 0.5 ps	$1.7 \mathrm{\ ps}$	24 / 70 GeV/c
	10 ps / $\sqrt{200}$	r ps	< 0.5 ps	1.7 ps	24 / 10 GeV/C

Summary

- The Fermilab Test Beam Facility is a user-oriented facilities aimed at providing high energy/intensity particle beams for applications in particle, nuclear, and beyond
- New LAPPD based TOF will provide event-by-event PID for users
- New improvements in LAPPDs and electronics can further improve the reach of this PID system
- We look forward to seeing you at Fermilab!
 - Slack Team: fnal-testbeam
 - Webpage: <u>ftbf.fnal.gov</u>, <u>ita.fnal.gov</u>
 - Listserv: <u>test_beam@fnal.gov</u>

Becoming an ITA or FTBF user

- Talk to the facility about a proposed experiment (ITA) and fill out a Technical Scope of Work
 - Agreement between test beam collaboration and the lab over what resources are used
 - Do you need significant engineering or tech support? Computing support? Will you have enough users to cover your shifts?
 - Document can be broad and cover multiple years and uses of the facility
- TSW information can be found here: <u>http://programplanning.fnal.gov/tsw_orc/</u>
 - Email us: <u>rominsky@fnal.gov</u> (Mandy), <u>edniner@fnal.gov</u> (Evan), <u>pastika@fnal.gov</u> (Joe)
 - Approvals typically take 4-6 weeks, depends on needs
- Scheduling for FTBF for beam runs open in summer, but reach out anytime!
 - MTest requests for typically 1-4 week periods with 12 hours of primary beam use, many groups can be accommodated at once
 - MCenter requests at lower energies, often longer periods, single user
- ITA is operational and has openings now, contact us for user requests

Off-The-Shelf Data Acquisition (OTSDAQ)

- FNAL computing division developed, flexible and scalable system allowing integration with other devices
 - Based on XDAQ (CMS) and ArtDAQ (Fermilab)
- Tied into facility MWPCs, Cherenkov detectors, silicon strip telescope.
- Several groups (CMS outer tracking, CMS Timing, RD53 chip, LHCb) have integrated and taken fully synchronized data with the telescope

Experiments at MTest

 FY23 MTest users have included experiments from the CMS, ATLAS, EIC, neutrino, and general R&D communities

MT6.2

MT6.1

N. J. Pastika CPAD 2023