Design of a 16 Channel 40 GS/sec 10 mW/Channel Waveform Sampling ASIC in 65 nm CMOS

Jinseo Park²,

D. Braga¹, F. Fahim¹, N. J. Pastika¹, P. M. Rubinov¹, T. N. Zimmerman¹, T. England¹, H. J. Frisch², M. Heintz², E. Oberla², C. Poe², Y. R. Yeung², C. Ertley³, N. Sullivan⁴, E. Angelico⁵, Hector Rico-Aniles⁶

1. Fermi National Accelerator Laboratory 2. University of Chicago 3. Southwest Research Institute 4. Angstrom Research Inc. 5. Stanford University 6. North Central College

Motivation: Detectors with ps resolution

...WE ALSO NEED SUB-PS RESOLUTION FE ELECTRONICS!

PSEC4 ASIC(2014)

E. Oberla , H. Frisch, K. Nishimura, G. Varner, arxiv.org/abs/1309.4397

2023-11-09

Performance Measurement

Same signal fed into two different channels of the same readout board.

- 1. Δt measured for many events.
- 2. Distribution of Δt acquired.

Depends on the source

- Sin
- Pulse/square

Depends on algorithm determining Δt .

PSEC5 / CPAD 2023

Primary goal

- Achieve <**1ps resolution** in measuring the arrival time of LAPPD pulses.
- But we also aim for a versatile chip, so that it is applicable to other fast-timing applications

•

•

•

•

•

•

Channel x16

Point 1. Fast & Slow Banks

• Fast Bank: 4 of them

- 64 samples
 - 1.6ns of sampling window
 - High power consumption
 - Run sequentially
 - Slow Bank (Timestamp)
 - 1024 samples
 - 204.8ns of sampling window
 - Low power consumption
 - Fast banks are triggered within the sampling window

Layout of a single column (16 cells)

Size: $45\mu m \times 25\mu m$ Capacitor: 35fFPower: 2mW

> Sampling Switch 2.5V NMOS Size: $4\mu m \times 280nm$

2023-11-09

Point 2. Sampling Jitter

Resolution Dependence on SNR, sampling at 40GHz

- At <1ps timing resolution region, sampling jitter is a **dominant component** of the overall uncertainty.
- PSEC4 employs Delay Loop Lines (DLL) to control sampling switches.

Resolution Dependence on Sampling Time Jitter, SNR = 1e-3

2023-11-09

PSEC5 / CPAD 2023

- 1. Measure many events of a sine wave.
- 2. Sum vs. Difference of two adjacent samples, over all events, form an ellipse.
- 3. Time offset can be determined from the coefficients.

10GHz True Single Phase Clock D Flip Flop

• Still, we expect to use similar calibration technique as PSEC4

PSEC5 / CPAD 2023

Switching Drift

- The value of a capacitor **drifts while it switches off** from the signal line.
- Drift consists of **switch gate charge injection**, which is a fixed value and is calibratable, and **resistive drift**, which is dependent on signal V.
- It is essential to keep the

[Sample → Hold] transition time low.

→NMOS instead of CMOS for the sampling switch!

2023-11-09

Summary

- MCP-based detectors can reach excellent timing resolution, and for a working ToF system with it, we want <1ps timing resolution of the front-end electronics.
- We think a waveform sampling ASIC is the most reliable, reusable, and cost-efficient solution.
 - Lower power consumption and dead time
 - Avails various methods of external calibration
 - High channel count per chip
- The fast-slow architecture of the chip makes it relatively versatile
 - Long time window per event
 - While also achieving high timing resolution on regions of interest
 - Using **D Flip Flops** instead of Delay Line improves sampling time jitter
 - Discriminator/Trigger logic with low propagation delay is the key
- 65nm is an adequate technology for this
 - Faster sampling speed, due to dynamic flip flops, compared to coarser technologies
 - High voltage transistors available compared to smaller technologies, can achieve a high V dynamic range