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Motivation: Detectors with ps resolution
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…WE ALSO NEED SUB-PS RESOLUTION FE ELECTRONICS!

Timing resolution ~5ps

Perazzini S, Ferrari F, Vagnoni VM, on 

behalf of the LHCb ECAL Upgrade-2 

R&amp;D Group. Development of an MCP-

Based Timing Layer for the LHCb ECAL 

Upgrade-2

LAPPDTM, psec.uchicago.edu

Also see N. J. Pastika’s talk



E. Oberla , H. Frisch, K. Nishimura, G. Varner, arxiv.org/abs/1309.4397

PSEC4 ASIC(2014)

3

• 12-bit depth

• 6 channel/chip

• 5ps resolution

• 130ns IBM 8RF
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E. Oberla, Talk at Workshop on Picosecond Photon 
Sensors, Clermont-Ferrand,
http://lappddocs.uchicago.edu/documents/243 



Performance Measurement
Same signal fed into two different channels of the same 
readout board.

1. Δ𝑡 measured for many events.

2. Distribution of Δ𝑡 acquired.

Depends on the source

• Sin 

• Pulse/square

Depends on algorithm determining Δ𝑡.
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Primary goal

• Achieve <1ps resolution in measuring the arrival time of 
LAPPD pulses.

• But we also aim for a versatile chip, so that it is applicable to 
other fast-timing applications
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• 65nm TSMC
• 10-bit depth
• 40GSa/s
• 5GHz Analog BW
• 16 channel/chip
• <10mW/ch
• UChicago & 

Fermilab

PSEC5
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Point 1. Fast & Slow Banks
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• Fast Bank: 4 of them
• 64 samples
• 1.6ns of sampling window
• High power consumption
• Run sequentially

• Slow Bank (Timestamp)
• 1024 samples
• 204.8ns of sampling window
• Low power consumption
• Fast banks are triggered within 

the sampling window

10bit 
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Fast Bank A

Fast Bank B

Propagation 
delay ~800ps

Hold delay 
~800ps

Fast Bank B 
starts here!

Fast Bank A begins 
with the slow bank.

Fast Bank Usage Example



Fast sampling - interleaved
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Layout of a single column (16 cells)
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Size: 45𝜇𝑚 × 25𝜇𝑚

Capacitor: 35fF

Power: 2mW

Sampling Switch
2.5V NMOS
Size: 4𝜇𝑚 × 280𝑛𝑚



Point 2. Sampling Jitter
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• At <1ps timing resolution region, 
sampling jitter is a dominant 
component of the overall uncertainty.

• PSEC4 employs Delay Loop Lines (DLL) 
to control sampling switches.

Monte Carlo results based on Delagnes, arXiv:1606.05541

Diminishing return 
above 10 ENoB



1. Measure many events of a sine wave.

2. Sum vs. Difference of two adjacent samples, over all events, form an ellipse.

3. Time offset can be determined from the coefficients.
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𝑉𝑖 + 𝑉𝑖+𝑚[𝑉]
𝑉 𝑖
−
𝑉 𝑖
+
𝑚
[𝑉
]

𝑡𝑖+𝑚 − 𝑡𝑖 determined by 
eccentricity and rotation.

PSEC4 Measurement
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Low SNR → fainter, more spread curve.
Nonlinearity → distorted curve 

𝑡𝑖 𝑡𝑖+𝑚
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Bandwidth affects 
sample time uncertainty!



10GHz True Single Phase Clock D Flip Flop

• Still, we expect to use similar calibration technique as PSEC4
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10GHz

To each sampling switches



Switching Drift
• The value of a capacitor drifts while it 

switches off from the signal line.

• Drift consists of switch gate charge 
injection, which is a fixed value and is 
calibratable, and resistive drift, which 
is dependent on signal V.

• It is essential to keep the 

[Sample → Hold] transition time low.

→NMOS instead of CMOS for the 
sampling switch!
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Summary
• MCP-based detectors can reach excellent timing resolution, and for a working ToF system with it, 

we want <1ps timing resolution of the front-end electronics.

• We think a waveform sampling ASIC is the most reliable, reusable, and cost-efficient solution.
• Lower power consumption and dead time

• Avails various methods of external calibration

• High channel count per chip

• The fast-slow architecture of the chip makes it relatively versatile
• Long time window per event

• While also achieving high timing resolution on regions of interest

• Using D Flip Flops instead of Delay Line improves sampling time jitter

• Discriminator/Trigger logic with low propagation delay is the key

• 65nm is an adequate technology for this
• Faster sampling speed, due to dynamic flip flops, compared to coarser technologies

• High voltage transistors available compared to smaller technologies, can achieve a high V dynamic range
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