RDC #3 Solid State Tracking

Introduction

1

Welcome

- We are very excited to see everyone
- There are three RDC3 sessions:
 - Tuesday 1600-1800: Sensors/modules/interconnections
 - Wednesday 1100-1230: MAPs (joint with RDC4: ASICs)
 - Thursday 1600-1800: LGADs (joint with RDC11: Timing)
- There are also many sessions related to Solid State Detectors:
 - Tuesday 1330-1600: RDC4: Circuits and Architectures for 4D tracking and calorimeters
 - Wednesday 1330-1600: RDC4 Big Data Management
 - Thursday: 1100-1230: RD10: Mechanics and Cooling
 - Thursday: 1330-1600: RDC4: Methodologies, Tools, IC Block, SoCs, and Workforce Development

RDC 3: Solid State Tracking

- RDC Coordinators
 - Name: Tony Affolder
 - affolder@ucsc.edu
 - Name: Sally Seidel
 - seidel@unm.edu
- Dedicated RDC Email List
 - cpad_rdc3@fnal.gov
 - To subscribe:
 - Send an e-mail message to listserv@fnal.gov
 - Leave the subject line blank
 - Type "SUBSCRIBE cpad_rdc3 FIRSTNAME LASTNAME" (without the quotation marks) in the body of the e-mail message

Tony Affoder UCSC-SCIPP Silicon Sensors, Modules and Tracking Systems

Meetings

- We had an RDC3 Introductory Meeting on Oct. 4th: <u>https://indico.fnal.gov/event/61509/</u>
- At it, there was a series of 2-3 page flash-talks where groups got to introduce themselves, what they are doing presently, and their future interests.
 - If you didn't present, please send us a few slides and we will add it to the agenda to collect everyone's interests in one place
 - We are still looking for a good method to gather all our material.
- We plan to have regular ~quarterly meetings of RDC3 in order to keep in touch, communicate new information, discuss how we are interacting with DRD3,....
 - We may have ad-hoc meetings when necessary for grant planning,....

Goals for this week:

- Improve understanding of the size and interests of the community in order to better organize and start gathering around a few ideas for funding proposals, and common projects
 - RDC3 should be community driven; we want to be facilitators working towards common projects and goals
- Learn about all the great new ideas and developments in the US
 - There is a notable critical mass around MAPs and LGAD-based systems
 - At the end of these sessions, we have reserved a few minutes to start collecting thoughts on common goals, areas needing development, etc.

Longer Term R&D Priorities

- Directions encompassed in BRN and Snowmass Reports
- Areas of R&D Priorities
 - Topic Area #1: Adapting non-silicon and novelconfiguration sensors
 - Improved costs, area, radiation tolerance, performance
 - Topic Area #2: Scalable, low-mass detector systems
 - MAPs based tracking
 - Topic Area #3: Trackers for Lepton Colliders
 - Similar requirements for timing and spatial resolution
 - Topic Area #4: Trackers for Hadronic Colliders
 - Extreme radiation with fine timing and spatial resolution
 - Topic Area #5: Advanced modeling

	PRD	Thrust
i	PPD 19. Develop high	Thrust 1. Lopton colliders, requiring timing
	FKD 18: Develop high	Thrust I: Lepton conders, requiring timing
	spatial resolution pixel de-	on the order of 10 ps; pixel pitch on the order
	tectors with precise per-	of 10 microns
	pixel time resolution to	Thrust 2: Hadron colliders, requiring timing
	resolve individual inter-	resolution down to 1 ps to achieve HL-LHC-
	actions in high-collision-	like pileup, in a high radiation environment
	density environments	(up to fluences in the order of $10^{18} n_{eq}/cm^2$)
	PRD 19: Adapt new	Thrust 1: Adapting non-silicon and novel-
	materials and fab-	configuration sensors (diamond, large-
	rication/integration	bandgap semiconductors, thin film materials,
	techniques for particle	nanotechnology, 3D sensors, new emerging
	tracking	materials) with new industrial partnerships
		Thrust 2: Development of readout electronics
		matched to new sensor characteristics, includ-
		ing new processing such as 3D-integration
	PRD 20: Realize scalable,	Thrust 1: Highly integrated monolithic, active
	irreducible-mass trackers	sensors
		Thrust 2: Scaling of low-mass detector system
		Thrust 3: Systems for special applications:
		space-based tracking detectors, and dedicated
		searches for rare processes and dark matter

Table 20 of BRN

- IF03-1 Develop high spatial resolution pixel detectors with precise per-pixel time resolution to resolve individual interactions in high-collision-density environments
- ${\bf IF03-2}\,$ Adapt new materials and fabrication/integration techniques for particle tracking in harsh environments, including sensors, support structures and cooling
- ${\bf IF03-3}\,$ Realize scalable, irreducible-mass trackers in extreme conditions
- **IF03-4** Push advanced modeling for simulation tools, developing required extensions for new devices, to drive device design.
- ${\bf IF03-5}$ Provide training and retain expert workforce to enable future tracking systems to be designed, developed, constructed and simulated.
- IF03-6 Nurture collaborative networks, provide technology benchmarks and roadmaps and funding in order to develop required technologies on necessary time scales, costs and scope.

Key Points from IF03 in Snowmass Instrumentation Report

Our vision of the scope of RDC3

- Future systems will be very challenging and require co-design at the early stages to reach the targets our physics goals demand
 - Silo'd designs which worked for the LHC and HL-LHC upgrades cannot work in our opinion
- In the long term, we would like to target larger work packages which will study the topic areas on the previous slide
 - Requires working closely with other RDCs and DRDs at the beginning
 - DRC4 (Readout and ASICs), DRC10 (Detector Mechanics), DRC11 (Fast Timing), ECFA DRD3 (Solid State), ECFA DRD7 (Electronics), ECFA DRD8 (Integration)
 - How we work with the ECFA DRDs is not clear but such collaboration is welcomed on both sides
 - In addition to the sensor elements themselves, we need to make sure we can read them out, support and service the full system.

Funding in the near term

- For the foreseeable future (next 2 years), there is no new earmarked funds within CPAD from the DOE for R&D
- The presentation of the P5 report at the Dec. 7-8th HEPAP may give some guidance.
 - How to fund our work and the split between the frontiers (R&D, Energy, Intensity,...) is not clear
- In the next year, only available path is in the FOA: DE-FOA-0003177, section 5F, page 63 for multi-institutional projects
- At the first RDC3 meeting, we were encouraged to promote:
 - Blue Skies proposals
 - Teams working together more: as in ~2-3 options of common submission to foundries for CMOS MAPs, more common submissions in LGADs and electronics for it
 - Holistic (non-silo'd) design and development
- Because of the above, we propose we pull together a few multi-institutional proposals for submission before September 2024 for Blue Skies or non-experiment specific general R&D for timing and MAPs