ASTROPIX: LOW POWER CMOS DETECTORS

JESSICA METCALFE

November 8, 2023
CPAD, SLAC
AstroPix is a monolithic CMOS sensor developed for space-based applications

- Concept was to leverage the development work done by HEP
- Grew from the ATLASPix development
- NASA technology development project
- Several AstroPix development cycles to date
AMEGO-X

What is AMEGO-X?

• Gamma ray telescope
• ‘Next generation’ Fermi Telescope
• Target the MIDEX size instrument → ~$400M budget
• Expected proposal (similar to CD-2 phase) in 2026
• 4 towers, 40 layers each, 0.5 m x 0.5 m

Table 1: The Gamma-Ray Telescope baseline capabilities.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Range</td>
<td>25 keV – 1 GeV</td>
</tr>
<tr>
<td>Energy Resolution</td>
<td>5% FWHM at 1 MeV, 17% (68% containment half width) at 100 MeV</td>
</tr>
<tr>
<td>Point Spread Function</td>
<td>4° FWHM at 1 MeV, 3° (68% containment) at 100 MeV</td>
</tr>
<tr>
<td>Localization Accuracy</td>
<td>transient: 1° (90% CL radius), persistent: 0.6° (90% CL radius)</td>
</tr>
<tr>
<td>Effective Area</td>
<td>1200 cm² at 100 keV, 500 cm² at 1 MeV, 400 cm² at 100 MeV</td>
</tr>
<tr>
<td>Field of View</td>
<td>2π sr (<10 MeV), 2.5 sr (>10 MeV)</td>
</tr>
</tbody>
</table>

R. Caputo et al., 2022
AMEGO-X PHYSICS

• Target MeV scale physics
 • Move to a lower energy regime to provide improved sensitivity
 • Provide better pointing resolution for multi-messenger physics
• AstroPix replaced double-sided strip detectors as the new baseline
 • Provides a pixelated readout
 • Lower energy threshold
 • Room temperature readout
 • Affordable

10x improvement in sensitivities at low energies
MEV INSTRUMENT CHALLENGES

Original AstroPix Design Goals:
Observe Compton scattering in the MeV range

- Low Power
 - limited by solar panels & payload
 - fewer/larger pixels, slower readout
- Energy Resolution:
 - aim for low energy gamma rays
 - thicker sensors
- Low Mass
 - Avoid photon conversions in dead material
- High Position Precision
 - Pixelated tracking

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{Res}</td>
<td><10% at 60 keV</td>
</tr>
<tr>
<td>Power Usage</td>
<td><1 mW/cm²</td>
</tr>
<tr>
<td>Passive Material</td>
<td><5% on the active area of Si</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>$500 \times 500 \mu$m²</td>
</tr>
<tr>
<td>Si Thickness</td>
<td>500 μm</td>
</tr>
<tr>
<td>Time Tag</td>
<td>$\sim 1 \mu$s</td>
</tr>
</tbody>
</table>
Current AstroPix Specs:

- 180 nm CMOS at TSI in California
 - Moving to AMS or other foundry
- 500 μm x 500 μm pixels;
- 700 μm thick
- Power consumption: ~1.5 mW/cm²
- Energy resolution target (single sensor) 2% @ 600keV
ASTROPIX DEVELOPMENT

ATLASPix

100 μm thick wafer
40 x 130 μm² pitch
0.3 x 1.6 cm² chip
150 mW/cm²

AstroPix_v1

720 μm thick wafer
175 x 175 μm² pitch
0.5 x 0.5 cm² chip
14.7 mW/cm²

AstroPix_v2

250 x 250 μm² pitch
1 x 1 cm² chip
3.4 mW/cm²

AstroPix_v3

500 x 500 μm² pitch
2 x 2 cm² chip
1.06 mW/cm²

(Power numbers represent amplifier+comparator only, not full digital power. Full v3 power draw = 4.12 mW/cm²)
I. Brewer et al., 2021

A. Steinhebel et al., 2022

Y. Suda et al., 2023
ASTROPIX: V4

AstroPix Features (v4):
- Potentially the final design in small size 1 cm x 1 cm
- 500 μm pixel pitch
- Wafers recently delivered by foundry
- Previous versions needed to meet certain ‘flyable’ specifications like low power
- Implement more features for better performance

Features:
- Time stamp w/ 3.125 ns time resolution
- Row & Column from individual pixel hitbuffer
- Increase Time-Over-Threshold (ToT) bits
- Improve Threshold tuning (5-bit)
- Mask noisy pixels
- Pass hits to next chip (daisy chain)
- Self-triggered (only read out active hits)

N. Striebig et al, in prep
ASTROPIX: NEXT STEPS

Several Features to Validate Performance:

- Daisy chain readout
 - Multi-chip module read-out board
 - Check for data loss/max occupancy
- Sensor efficiency between pixels, depth
 - Preparing for edge-TCT measurements
 - Charge collection efficiency
- Flex bus tape design
- DAQ development
- Update previous results with v4
 - Test Beam
 - Irradiation: SEU, LET, Total Dose

- Command/Power is distributed through a bus tape
- Wire bonded from bus tape
- Signals are digitized and routed out to the neighbor chip via wire bonds
NASA LARGE-SCALE PROTOTYPES

A-STEP
Astropix Sounding rocket Technology dEmonstration Payload
- Sounding-rocket hosted flight of 3 v3 quad-chips
- Summer 2025

ComPair 2
Compton-Pair telescope prototype
- High-altitude balloon hosted flight
- Prototype of AMEGO-X tower
- Instrument integration and gamma-ray beam test end of 2026

A. Steinhebel et al, 2023
D. Violette et al, in prep
 BARREL IMAGING CALORIMETER FOR EIC

GlueX Pb/SciFi sampling calorimeter

AstroPix tracking layers to capture 3D image of shower development
BIC

Addressing the unique challenges for the barrel region in ePIC

Hybrid concept: 6(4 now) layers of Astropix interleaved with the first 5 Pb/ScFi layers, followed by a large volume with the rest of the Pb/ScFi layers

✓ Deep calorimeter (21 X_0) but still very compact at ~ 40 cm
✓ Excellent energy resolution (5.2% \sqrt{E} + 1.0%)
✓ Unrivaled low-energy electron-pion separation by combining the energy measurement with shower imaging
✓ Unrivaled position resolution due to the silicon layers
✓ Deep enough to serve as inner HCal
✓ Very good low-energy performance
✓ Wealth of information enables new measurements, ideally suited for particle-flow
✓ Makes the tracking MPGD layer behind the DIRC unnecessary
Addressing the unique challenges for the barrel region in ePIC

Hybrid concept: 6(4 now) layers of Astropix interleaved with the first 5 Pb/ScFi layers, followed by a large volume with the rest of the Pb/ScFi layers

- Deep calorimeter (21 X_0)
- Excellent energy resolution (5.2% /√_E 1.0%)
- Unrivaled low-energy electron-pion separation by combining the energy measurement with shower imaging
- Unrivaled position resolution due to the silicon layers
- Deep enough to serve as inner HCal
- Very good low-energy performance
- Wealth of information enables new measurements, ideally suited for particle-flow
- Makes the tracking MPGD layer behind the DIRC unnecessary

BIC Tracker

- ~100 m² of silicon
- ~5,000 wafers
- ~250,000 chips
- Optimize the design & building procedures for industrial scale production
 - 1 module flavor x31,200
 - 1 stave flavor x2,400

AstroPix: silicon sensor with 500x500μm² pixel size developed for the Amego-X NASA mission

ScFi Layers

- With two-sided SiPM readout

BIC Tracker

- ~100 m² of silicon
- ~5,000 wafers
- ~250,000 chips
- Optimize the design & building procedures for industrial scale production
 - 1 module flavor x31,200
 - 1 stave flavor x2,400

AstroPix: silicon sensor with 500x500μm² pixel size developed for the Amego-X NASA mission

ScFi Layers

- With two-sided SiPM readout
BIC PERFORMANCE

- Full simulation
- Implemented with AstroPix specs

- 3D shower images
- Excellent electron/pion separation
SUMMARY

- AstroPix has its roots in HEP CMOS development
- Adapted for low mass \rightarrow low inactive material detector design
- AstroPix design is relatively mature now
 - Expect v4 could be a final design
 - Full size chip fabrication run submission in about 1 year
- Work ongoing for large-scale proto-types
 - A-STEP rocket launch
 - COMPAIR-2 balloon launch
 - BIC Pb-SciFi + AstroPix segment prototype
Thank You
BACKUP
Monolithic: combines a traditional silicon pixel sensor wafer and the Front-End ASIC in a single wafer

- Each pixel has its own amplifier in a deep n-well
- High-resistivity substrates enable sensor depletion for collection via drift rather than diffusion
- Technology uses more typical CMOS wafer processing for cost effective production
- Single wafer enables shorter design cycle

History: HVCMOS developed by Ivan Peric at Karlsruhe Institute of Technology (KIT). He has designed MuPix, ATLASPix, AstroPix, etc.

AstroPix: initially for space-based applications

- Upgrade to the next generation Fermi Telescope—AMEGO-X
ASTROPIX TIMELINE & PRODUCTION

AstroPix versions
- **v1 early prototype**
- **v2 current test bench & test beam studies**
 - extensive test bench characterization
 - higher noise due to larger pixel size
 - LET radiation testing
 - first test beam run a few weeks ago
- **v3 full size chip**
 - minor fixes from v2
 - OR’d rows & columns
 - just received
- **v4 new features for better performance (MPW)**
 - ‘final version’, but smaller chip (1 cm x 1 cm)
 - plan to submit in May 2023
 - better noise/threshold performance
 - per pixel hitbuffer
- **v5 full size chip**
 - fix any bugs from v4
 - Final production version
 - chips available November 2024

Design Validation
- test bench characterization complete
- LET irradiations done
- test beam measurements on-going
- multi-chip DAQ development
- daisy chain readout validation
- compare-1 NASA balloon test Fall 2023
 - DSSD’s
- A-STEP sounding rocket January 2025
- ComPair-2 balloon launch 2026

Multi-layer calorimeter prototype (ANL)
- full scale prototype to be built and tested w/ v3
- DAQ development joint with NASA

Production
- fabrication by TSI
 - AMS is a backup, but need a large order
AstroPix v1
- HV-CMOS MAPs based on ATLASpix3, designed for the AMEGO-X NASA mission, optimized for power dissipation and energy resolution
- 0.45 x 0.45 cm² chip, 175 µm pixel pitch
- 18 x 18 pixel matrix
- Power dissipation 14.7 mW/cm²

AstroPix v2
- 1 x 1 cm² chip, 250 µm pixel pitch
- 35 x 35 pixel matrix
- Row/column readout
- Power dissipation 3.4 mW/cm²

AstroPix v3
- First full-size chip
- Power dissipation <1 mW/cm²
- 2.5 MHz timestamp, 200 MHz ToT
- v3 has comprehensive test program: benchtop and testbeam, irradiation, quad-chip readout for NASA payload mission (A-STEP), integration with Pb/SciFi for ePIC (R&D studies and test article production)

AstroPix v4
- Individual pixel readout
- 3 timestamps, 3.25ns time resolution
- TuneDAC for pixel-by-pixel thresholds

AstroPix v5
- Full-size production chip
- Design identical to v4 (with bug fixes)

Not shown:
- Early CD4 (Oct 2032)
- CD4 (Oct 2034)

EIC Project Milestone
- Start of production driven by project fund availability (estimated ~ 1 year after CD2/3)

New AstroPix version
- first v5 wafers used for preproduction

We are here

Design & Fabr.
- Test

EIC Project Milestone
- Start of BIC installation at BNL

ePIC BIC Timeline
- Design and generic R&D
- Final design and EIC R&D
- BIC Preproduction
- BIC Production
- Production Fab.

AstroPix v5 (production)
BIC HIGH-LEVEL SCHEDULE

Prototype R&D
Final Design/PED
Pre-production
Scintillating Fiber Fabrication
Production SciFi/local support layers and testing
Production wafer fabrication v5
Wafer testing
Sectors/Trays production assembly and testing
Integration
Delivery
Sector Assembly in a Barrel and Integration with Si Trays

ePIC decision about Barrel ECAL
April 23
CD-3a
Jan 24
CD-2/3
Apr 25
Barrel Installation in BNL
Jun 29

2022 2023 2024 2025 2026 2027 2028 2029

AstroPix v3
Feb 2023
AstroPix v4
Nov 2023
AstroPix v5
Nov 2024

2022 2023 2024 2025 2026 2027 2028 2029

Today ePIC decision about Barrel ECAL April 23
CD-3a Jan 24
CD-2/3 Apr 25
Barrel Installation in BNL Jun 29
AstroPix

HV-CMOS Monolithic Active Pixel Sensor (MAPS):
- Combination of silicon pixel & Front-End ASIC
- On-pixel charge amplification and digitization
- Technology uses more typical CMOS wafer processing for cost effective mass production
- Fabrication on single wafer enables shorter design cycle
- No need to bump-bond to each pixel - improves yield

AstroPix (based on ATLASPix3 arXiv:2109.13409)
- 180nm HV-CMOS MAPS sensor designed at KIT (also designed ATLASPix, MuPix, etc.)
- Developed for AMEGO-X GSFC/NASA mission (Upgrade to the Fermi’s LAT)
- Power consumption <1.5 mW/cm²
- Energy resolution target of 2% @ 662keV
AstroPix Developments

AstroPix v1 - January 2021
- $0.45 \times 0.45 \text{ cm}^2$ chip, 175 μm pixel pitch
- 18×18 pixel matrix
- Power dissipation ~14.7 mW/cm2

AstroPix v2 - December 2021
- $1 \times 1 \text{ cm}^2$ chip with 250 μm pixel pitch
- 35×35 pixel matrix
- Hit identification with Row/Column readout
- Power dissipation ~3.4 mW/cm2

AstroPix v3 - February 2023
- $2 \times 2 \text{ cm}^2$ chip with 500 μm pixel pitch
- Power dissipation <1 mW/cm2 (targeted)
- Timestamp clock 2.5MHz, ToT 200 MHz
- 10 byte data frame per hit

Will be available this week
AstroPix v4/v5

AstroPix v4 : Final design version will small size
- Chip size $1 \times 1 \text{ cm}^2$; Thickness 700 μm, $V_{BD} \sim 400V$
- Pixel pitch 500 μm with pixel size 300 μm, 16×16 pixel matrix
- Individual pixel readout with individual hit buffer
 - No identification issue due to ghost hits
- 3 Timestamps - 2.5MHz (TS), 20 MHz (Fine TS), and 16 bit Flash TDC
 - Fast ToT and Timestamp with 3.125 ns time resolution
- TuneDACs - Pixel-by-pixel threshold tuning and pixel masking
- Daisy Chain readout - pass hits to next chip through QSPI
- Self-triggered (reads out active hits)

AstroPix v5 : Full size final design
- No planned design changes
- Fix any bug from v4
- Full size chip - $2 \times 2 \text{ cm}^2$, pixel pitch 500 μm,
- 35×35 pixel matrix \rightarrow 1225 hit buffers
AstroPix Readout

- 8 bytes data per hit - header (chipID, payload), row/column, timestamp, ToT
- SPI I/O daisy chained - chip-to-chip signal transfer
 - signals are digitized & routed out to the neighboring chip using 5 SPI lines via wire bond
- Power/Logic I/O distribution on the module (through a bus tape)
 - 4 power lines (LV, HV), ~20 Logic I/O (SPI, clk, timestamp, interrupt, digital Injection, etc.)
 - HV, VDDA/VDDD(1.8V), VSSA(1.2V), Vminuspix(0.7V)
 - power distribution can be controlled using voltage regulators
 - mostly part of end of the stave services
- Data will be received by FPGA at the end of stave
 - FPGA aggregates data before sending off-detector
- Low heat load at chip, only cooling of end of the stave card
- Operational temperature for AstroPix is at room temperature and considered to be operated at 22 °C
AstroPix at ePIC

Low Rates

- The expected hit rate for **all imaging layers together** is well below $< 3 \times 10^7$ Hz
- This translates to a maximum hit rate per tracker stave (1 x 104 chips) < 36 kHz

Zero-suppression below threshold 20 keV ($4 \times$ noise floor) well suited for EIC electromagnetic showers

Timing requirement: 3.125 ns (v4/v5) - **driven by 10 ns bunch crossing**

Low Ionization radiation dose and neutron flux

- The maximum **ionizing radiation dose** < 1 kRad/year for the barrel region
- Max neutron flux - order of $10^9 \text{n}_{\text{equivalent}}/\text{cm}^2 \text{ per year}$

Dynamic range (see plot for 2 GeV e$^-$)

~ 3 MeV

![Dynamic range graph]

Accumulative energy deposit to the total energy deposit for 2 GeV electrons.

- About 63% of the energy deposit was made through hits with deposit < 700 keV
- Hits with deposit < 3 MeV contribute to 99% of the total energy deposit
AstroPix Assembly

Module Strategy

- QC testing with wafer probing + Module and stave level QC testing and tuning
- “Baseline” model of Modules on Stave
 - Module - 8 single chips
 - Stave - 13 Modules - 104 chips
 - 12 or 14 Staves per AstroPix layer per Calorimeter Sector
 - Total 249600 chips
- All staves are identical and gets combined in a separate production step
- Data transmitted to end of the Stave card using flex base tape
- Institutions - ANL, GSFC/NASA, KIT, UCSC, Korea, Oklahoma State

Tray - a carbon fiber structure the staves will be mounted on. It will be slid into a shelf.

Sector (48 total)

AstroPix Stave
Consists of 1 x 108 chips with the support structure, “turbofanned” AstroPix Module
Subset of chips

Shelf - a carbon fiber structure that is glued to the Pb/ScFi layers, that we will slide trays with AstroPix staves on.

*The designs presented on these slides are not final but for illustration only.
AstroPix Timeline and Production

v3 full size chip (ongoing testing)
- Test bench characterization (ongoing)
- Testbeam performance studies
- Active and passive irradiation $\sim 10^{15} \text{n}_{\text{equivalent}}/\text{cm}^2$
- **Quad-chip readout (ready to test)** for NASA’s hosted payload mission (A-Step) - January 2025
- Integration with Pb/SciFi - FY2024

v4 new features for better performance (MWP)
- **Final design version**, smaller chip (1cm × 1cm)
- Fabricated wafers delivered last week
- Chip carrier board design for bench test is ready for the PCB fabrication

v5 full size final chip
- Fix any bugs from v4
- v5 chips available November 2024

GSFC/NASA ComPair-2 AstroPix timeline

<table>
<thead>
<tr>
<th>Tasks</th>
<th>FY24</th>
<th>FY25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ON</td>
<td>DJ</td>
</tr>
<tr>
<td>Full ComPair Instrument</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AstroPix Tracker</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AstroPix v3 Quad Chip Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v3 Depletion Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v3 multi-layer testing (A-STEP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrate v3 w/ proto Segment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AstroPix v4 MPW design + fab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AstroPix v4 carrier board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AstroPix v4 testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v4 Depletion Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard test procedure dev.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AstroPix v5 testing carrier board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AstroPix v5 design + fab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AstroPix v5 testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deliver to ANL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BIC@ePIC Timeline

- **Prototype R&D (v3)** Ongoing - till Nov 24
- Pre-Production (v5) chips starts **Nov 2024**

Production

- Fabrication by TSI - with a large production order, AMS is a backup