

ASTROPIX: LOW POWER CMOS DETECTORS

JESSICA METCALFE

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

November 8, 2023 CPAD, SLAC

ASTROPIX

AstroPix is a monolithic CMOS sensor developed for space-based applications

- Concept was to leverage the development work done by HEP
- Grew from the ATLASPix
 development
- NASA technology development project
- Several AstroPix development cycles to date

AMEGO-X

What is AMEGO-X?

- Gamma ray telescope
- 'Next generation' Fermi Telescope
- Target the MIDEX size instrument → ~\$400M budget
- Expected proposal (similar to CD-2 phase) in 2026
- 4 towers, 40 layers each, 0.5 m x 0.5 m

Table	1: The Gamma-Ray Telescope baseline capabilities.

Parameter	
Energy Range	25 keV – 1 GeV
Energy Resolution	5% FWHM at 1 MeV, 17% (68% containment half width) at 100 MeV
Point Spread Function	4° FWHM at 1 MeV, 3° (68% containment) at 100 MeV
Localization Accuracy	transient: 1° (90% CL radius), persistent: 0.6° (90% CL radius)
Effective Area	1200 cm^2 at 100 keV, 500 cm ² at 1 MeV, 400 cm ² at 100 MeV
Field of View	2π sr (<10 MeV), 2.5 sr (>10 MeV)

R. Caputo et al, 2022

AMEGO-X PHYSICS

- Target MeV scale physics
 - Move to a lower energy regime to provide improved sensitivity
 - Provide better pointing resolution for **multi-messenger** physics
- AstroPix replaced double-sided strip detectors as the new baseline
 - Provides a pixelated readout
 - Lower energy threshold
 - Room temperature readout
 - Affordable

10-2

10-1

10⁰

10¹

 10^{2}

Energy [MeV]

10³

10⁴

10⁵

10⁶

AM004

MEV INSTRUMENT CHALLENGES

Original AstroPix Design Goals:

Observe Compton scattering in the MeV range

- Low Power
 - limited by solar panels & payload
 - fewer/larger pixels, slower readout
- Energy Resolution:
 - aim for low energy gamma rays
 - thicker sensors
- Low Mass
 - Avoid photon conversions in dead material
- High Position Precision
 - Pixelated tracking

Parameter	Goal									
\mathbf{E}_{Res}	${<}10\%$ at 60 keV									
Power Usage	$<1 \mathrm{mW/cm^2}$									
Passive Material	${<}5\%$ on the active area of Si									
Pixel Size	$500 \times 500 \ \mu m^2$									
Si Thickness	$500~\mu{ m m}$									
Time Tag	$\sim 1 \ \mu s$									

ASTROPIX: MONOLITHIC HVCMOS SENSOR

Current AstroPix Specs:

- 180 nm CMOS at TSI in California
 - Moving to AMS or other foundry
- 500 µm x 500 µm pixels;
- 700 µm thick
- Power consumption: ~1.5 mW/cm²
- Energy resolution target (single sensor) 2% @ 600keV

ASTROPIX DEVELOPMENT

100 µm thick wafer 40 x 130 µm² pitch 0.3 x 1.6 cm² chip 150 mW/cm²

175 x 175 µm² pitch $0.5 \times 0.5 \text{ cm}^2$ chip 14.7 mW/cm²

---720 µm thick wafer -----_____ 250 x 250 µm² pitch $1 \times 1 \text{ cm}^2$ chip 3.4 mW/cm^2

500 x 500 μ m² pitch $2 \times 2 \text{ cm}^2 \text{ chip}$ 1.06 mW/cm²

(Power numbers represent amplifier+comparator only, not full digital power. Full v3 power draw = 4.12 mW/cm²)

ASTROPIX DEVELOPMENT

AstroPix_v2

ASTROPIX: V4

AstroPix Features (v4):

- Potentially the final design in small size 1 cm x 1 cm
- 500 um pixel pitch
- Wafers recently delivered by foundry
- Previous versions needed to meet certain 'flyable' specifications like low power
- Implement more features for better performance

Features:

- Time stamp w/ 3.125 ns time resolution
- Row & Column from individual pixel hitbuffer
- Increase Time-Over-Threshold (ToT) bits
- Improve Threshold tuning (5-bit)
- Mask noisy pixels
- Pass hits to next chip (daisy chain)
- Self-triggered (only read out active hits)

N. Striebig et al, in prep

ASTROPIX: NEXT STEPS

Several Features to Validate Performance:

- Daisy chain readout
 - Multi-chip module read-out board
 - Check for data loss/max occupancy
- Sensor efficiency between pixels, depth
 - Preparing for edge-TCT measurements
 - Charge collection efficiency
- Flex bus tape design
- DAQ development
- Update previous results with v4
 - Test Beam
 - Irradiation: SEU, LET, Total Dose

- Command/Power is distributed through a bus tape
- Wire bonded from bust tape
- Signals are digitized and routed out to the neighbor chip via wire bonds

NASA LARGE-SCALE PROTOTYPES

A-STEP

Astropix Sounding rocket Technology dEmonstration Payload

- Sounding-rocket hosted flight of 3 v3 quad-chips
- Summer 2025

A. Steinhebel *et al*, 2023 D. Violette *et al*, in prep

ComPair 2

Compton-Pair telescope prototype

- High-altitude balloon hosted flight
- Prototype of AMEGO-X tower
- Instrument integration and gamma-ray beam test end of 2026

Argonne

BARREL IMAGING CALORIMETER FOR EIC

GlueX Pb/SciFi sampling calorimeter

AstroPix tracking layers to capture 3D image of shower development

AstroPix

BIC

Addressing the unique challenges for the barrel region in ePIC

Hybrid concept: 6(4 now) layers of Astropix interleaved with the first 5 Pb/ScFi layers, followed by a large volume with the rest of the Pb/ScFi layers

- \checkmark Deep calorimeter (21 $X_0)$ but still very compact at ~ 40 cm
- ✓ Excellent energy resolution (5.2% /√E ⊕ 1.0%)
- ✓ Unrivaled low-energy electron-pion separation by combining the energy measurement with shower imaging
- \checkmark Unrivaled position resolution due to the silicon layers
- \checkmark Deep enough to serve as inner HCal
- \checkmark Very good low-energy performance
- ✓ Wealth of information enables new measurements, ideally suited for particle-flow
- ✓ Makes the tracking MPGD layer behind the DIRC unnecessary

BIC

Addressing the unique challenges for the barrel region in ePIC

Hybrid concept: 6(4 now) layers of Astropix interleaved with the first 5 Pb/ScFi layers,

followed by a large Pb/ScFi layers

- Deep calorimeter (21
- Excellent energy resc
- Unrivaled low-energy the energy measurer
- Unrivaled position res
- Deep enough to serv
- Very good low-energy
- Wealth of information suited for particle-flow

BIC Tracker

- ~100 m² of silicon
- ~5.000 wafers
- ~250,000 chips
- Optimize the design & building procedures for industrial scale production
 - 1 module flavor x31,200
 - 1 stave flavor x2,400

ScFi Layers with two-sided SiPM readout

Makes the tracking MPGD layer behind the DIRC unnecessary

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

BIC PERFORMANCE

- Full simulation
- Implemented with AstroPix specs

3D shower images

Excellent electron/pion separation

SUMMARY

- AstroPix has its roots in HEP CMOS development
- Adapted for low mass \rightarrow low inactive material detector design
- AstroPix design is relatively mature now
 - Expect v4 could be a final design
 - Full size chip fabrication run submission in about 1 year
- Work ongoing for large-scale proto-types
 - A-STEP rocket launch
 - COMPAIR-2 balloon launch
 - BIC Pb-SciFi + AstroPix segment prototype

BACKUP

SENSORS: MONOLITHIC HVCMOS (MONOLITHICS ACTIVE PIXEL SENSOR (M

Monolithic: combines a traditional silicon pixel sensor wafer and the Front-End ASIC in a single wafer

- Each pixel has it's own amplifier in a deep n-well
- High-resistivity substrates enable sensor depletion for collection via drift rather than diffusion
- Technology uses more typical CMOS wafer processing for cost effective production
- Single wafer enables shorter design cycle **History:** <u>HVCMOS</u> developed by Ivan Peric at Karlsruhe Institute of Technology (KIT). He has designed MuPix, ATLASPix, AstroPix, etc.

AstroPix: initially for space-based applications

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

 Upgrade to the next generation Fermi Telescope— AMEGO-X

ASTROPIX TIMELINE & PRODUCTION

AstroPix versions

- v1 early prototype
- v2 current test bench & test beam studies
 - extensive test bench characterization
 - higher noise due to larger pixel size
 - LET radiation testing
 - first test beam run a few weeks ago
- v3 full size chip
 - minor fixes from v2
 - OR'd rows & columns
 - just received
- v4 new features for better performance (MPW)
 - 'final version', but smaller chip (1 cm x 1 cm)
 - plan to submit in May 2023
 - better noise/threshold performance
 - per pixel hitbuffer
- v5 full size chip
 - \circ fix any bugs from v4
 - Final production version
 - chips available November 2024

Design Validation

- test bench characterization complete
- LET irradiations done
- test beam measurements on-going
- multi-chip DAQ development
- daisy chain readout validation
- compare-1 NASA balloon test Fall 2023
 DSSD's
- A-STEP sounding rocket January 2025
- ComPair-2 balloon launch 2026

Multi-layer calorimeter prototype (ANL)

- full scale prototype to be built and tested w/ v3
- DAQ development joint with NASA

Production

- fabrication by TSI
 - AMS is a backup, but need a large order

ASTROPIX DEVELOPMENT SCHEDULE We are here

Not shown:

BIC HIGH-LEVEL SCHEDULE

AstroPix

HV-CMOS Monolithic Active Pixel Sensor (MAPS):

- Combination of silicon pixel & Front-End ASIC
- On-pixel charge amplification and digitization
- Technology uses more typical CMOS wafer processing for cost effective mass production
- Fabrication on single wafer enables shorter design cycle
- No need to bump-bond to each pixel improves yield

AstroPix (based on ATLASPix3 arXiv:2109.13409)

- 180nm HV-CMOS MAPS sensor designed at KIT (also designed ATLASPix, MuPix, etc.)
- Developed for AMEGO-X GSFC/NASA mission (Upgrade to the Fermi's LAT)
- Power consumption <1.5 mW/cm²
- Energy resolution target of 2% @ 662keV

AstroPix Developments

AstroPix v1 - January 2021

- 0.45×0.45 cm² chip, 175 µm pixel pitch
- 18 × 18 pixel matrix
- Power dissipation ~14.7 mW/cm²

AstroPix v2 - December 2021

- 1×1 cm² chip with 250 µm pixel pitch
- 35 × 35 pixel matrix
- Hit identification with Row/Column readout
- Power dissipation ~3.4 mW/cm²

AstroPix v3 - February 2023

- $2 \times 2 \text{ cm}^2$ chip with 500 µm pixel pitch
- Power dissipation <1 mW/cm² (targeted)
- Timestamp clock 2.5MHz, ToT 200 MHz
- 10 byte data frame per hit

AstroPix v3 Quad-chip Carrier Board 26

Integration

AstroPix v4/v5

AstroPix v4 : Final design version will small size

- Chip size 1 \times 1 cm²; Thickness 700 μ m, V_{BD} ~ 400V
- Pixel pitch 500 μ m with pixel size 300 μ m, 16 \times 16 pixel matrix
- Individual pixel readout with individual hit buffer
 - No identification issue due to ghost hits
- 3 Timestamps 2.5MHz (TS), 20 MHz (Fine TS), and 16 bit Flash TDC
 - Fast ToT and Timestamp with 3.125 ns time resolution
- TuneDACs Pixel-by-pixel threshold tuning and pixel masking
- Daisy Chain readout pass hits to next chip through QSPI
- Self-triggered (reads out active hits)

AstroPix v5 : Full size final design

- No planned design changes
- Fix any bug from v4
- Full size chip $2 \times 2 \text{ cm}^2$, pixel pitch 500 μ m,
- 35×35 pixel matrix $\rightarrow 1225$ hit buffers Integration

27

AstroPix Readout

- 8 bytes data per hit header (chipID, payload), row/column, timestamp, ToT
- SPI I/O daisy chained chip-to-chip signal transfer
 - signals are digitized & routed out to the neighboring chip using 5 SPI lines via wire bond
- Power/Logic I/O distribution on the module (through a bus tape)
 - 4 power lines (LV, HV), ~20 Logic I/O (SPI, clk, timestamp, interrupt, digital Injection, etc.)
 - HV, VDDA/VDDD(1.8V), VSSA(1.2V), Vminuspix(0.7V)
 - power distribution can be controlled using voltage regulators
 - mostly part of end of the stave services
- Data will be received by FPGA at the end of stave
 - FPGA aggregates data before sending off-detector
- Low heat load at chip, only cooling of end of the stave card
- Operational temperature for AstroPix is at room temperature and considered to be operated at 22 °C

AstroPix v3 quad-chip carrier board

- Demonstrate required services
- Daisy chaining

28

AstroPix at ePIC

Low Rates

- The expected hit rate for all imaging layers together is well below < 3 × 10⁷ Hz
- This translates to a maximum hit rate per tracker stave (1 x 104 chips) < 36 kHz

Zero-suppression below threshold 20 keV (4 × noise

floor) well suited for EIC electromagnetic showers

Timing requirement: 3.125 ns (v4/v5) - **driven by 10 ns bunch crossing**

Low Ionization radiation dose and neutron flux

- The maximum **ionizing radiation dose < 1 kRad/year** for the barrel region
- Max neutron flux order of **10**⁹ **n**_{equivalent}/**cm**² **per year**

Dynamic range (see plot for 2 GeV e-)

Accumulative energy deposit to the total energy deposit for 2 GeV electrons.

Pixel Energy Deposit (MeV)

- About 63% of the energy deposit was made through hits with deposit < 700 keV
- hits with deposit < 3 MeV contribute to 99% of the total energy deposit

Integration

AstroPix Assembly

Subset of chips

*The designs presented on these slides are not final but for illustration only

staves on.

Module Strategy

- QC testing with wafer probing + Module and stave level QC testing and tuning
 - "Baseline" model of Modules on Stave
 - Module 8 single chips
 - Stave 13 Modules 104 chips
 - 12 or 14 Staves per AstroPix layer per Calorimeter Sector
 - Total 249600 chips
- All staves are identical and gets combined in a separate production step
- Data transmitted to end of the Stave card using flex base tape
- Institutions ANL, GSFC/NASA, KIT ,UCSC, Korea, Oklahoma State 30

Integration

AstroPix Timeline and Production

v3 full size chip (ongoing testing)

- Test bench characterization (ongoing)
- Testbeam performance studies
- Active and passive irradiation ~10¹⁵ n_{equivalent}/cm²
- Quad-chip readout (ready to test) for NASA's hosted payload mission (A-Step) January 2025
- Integration with Pb/SciFi FY2024

v4 new features for better performance (MWP)

- Final design version, smaller chip (1cm × 1cm)
- Fabricated wafers delivered last week
- Chip carrier board design for bench test is ready for the PCB fabrication

v5 full size final chip

- Fix any bugs from v4
- v5 chips available November 2024

			FY24											FY25												
	Tasks	ο	Ν	D	J	F	М	A	М	J	J	A	s	ο	Ν	D	J	F	М	Α	М	J	J	A	s	
	Full ComPair Instrument								С	DR	2														P	
	AstroPix Tracker													Tł	r-ا	PIF	R									
	AstroPix v3 Quad Chip Testing																									
2	v3 Depletion Test																									
	v3 multi-layer testing (A-STEP)																									
	Integrate v3 w/ proto Segment																									
	AstroPix v4 MPW design + fab																									
	AstroPix v4 carrier board																									
	AstroPix v4 testing																									
	v4 Depletion Test																									
	Standard test procedure dev.																									
	AstroPix v5 testing carrier board																									
	AstroPix v5 design + fab																									
	AstroPix v5 testing																K		De	eliv	er	to	A٨	IL		

GSEC/NASA ComPair-2 AstroPix timeline

BIC@ePIC Timeline

- Prototype R&D (v3) Ongoing till Nov 24
- Pre-Production (v5) chips starts **Nov 2024**

Production

• Fabrication by TSI - with a large production order, AMS is a backup