

Investigating the impact of 4D Tracking in ATLAS beyond Run 4

https://cds.cern.ch/record/2870326/files/ATL-PHYS-PUB-2023-023.pdf

Ariel Schwartzman, on behalf of the ATLAS Collaboration SLAC National Accelerator Laboratory

CPAD Workshop 2023 9-Nov-2023

Fast Timing in ATLAS

Under HL-LHC pileup conditions, the typical distance between vertices is comparable or smaller than the track longitudinal impact parameter at low p_T: **the association of tracks to vertices becomes ambiguous!**

Exploit the time spread of collisions to reduce pileup (track) contamination

Impact of HGTD Eta Coverage

HGTD: silicon pixel detector with coarse spatial resolution and picosecond timing

While the large ITk z0 resolution is mainly forward, HGTD requires a precise knowledge of the <u>vertex time</u> (t_0) to be able to relate a track time to a reference vertex time

The reconstruction of t_0 becomes challenging when only forward tracks are available

Motivations to extend timing capabilities in the central region beyond Run 4

- The inner pixel replacement presents an opportunity to <u>investigate the physics case of</u>
 <u>4D tracking beyond Run 4</u>
- Establish the merits of timing information in the central eta region using full simulated Monte Carlo samples, but with a simplified, and idealistic, model for track-time resolution

Precise determination of vertex t_0 : forward jets and leptons, and large c_{τ} LLPs

Improve physics objects in the central region: <u>b-tagging</u>, small c_{τ} LLPs

Improve track and vertex reconstruction:

CPU time, efficiency, purity, resolution, lower the minimum track p_T threshold

Inner Pixel is designed to to be replaced mid-way through HL-LHC $_{\rm 4}$

ITk

4D Tracker

zoom

pixel timing cut

Vertex t_0 reconstruction

30ps/track

DBSCAN clustering + average of track times

Excellent (<<30ps) vertex t_0 resolution for **all events**!

Pileup jet suppression

0.2

0.4

0.6

0.8

Additional pileup rejection

50% Improvement in VBF H \rightarrow invisible

- improved PU jet suppression
- access to the full acceptance of central-forward jets

Large impact in z0 significance from nearby pileup-vertices

10° ATLAS Simulation Preliminary I-jet $\sqrt{s} = 14 \text{ TeV}, \langle \mu \rangle = 200$ b-jet tt, 20 < pT < 250 GeV I-jet no PU 10 Dig b-jet no PU 10 arb. units 10 10 10 -40 -20 0 20 40 track signed d_0 significance

d0

z0

4D Tracking b-tagging improvement

Graph NN (GN1) b-tagging using track timing information

2x improvement in rejection at 70% efficiency and 30ps track time resolution

Impact on LLP searches

Displaced photons from exotic Higgs

decays: https://arxiv.org/pdf/2209.01029.pdf

Lack of knowledge of vertex t₀ dominates timing uncertainty

Impact on LLP searches

Significant gains in sensitivity for shorter lifetimes Noticeable improvements at longer lifetimes as well

- The ATLAS ITk inner pixel replacement presents a unique opportunity to bring technological innovations to address the complexity of pileup at the HL-LHC
- The physics case of a 4D tracking upgrade in ATLAS, extending HGTD capabilities, can be broad and compelling:
 - Provide precision vertex time O(5ps) for ALL events (assuming 30ps/track time resolution)
 - Improve forward pileup jet suppression
 - Improve searches for delayed photons or jets at shorter lifetimes compared to those accessible now or at the start of Run 4
 - Improve b-tagging light-jet rejection by more than a factor of 2 \rightarrow increase the *HH* \rightarrow *bbbb* discovery significance by up to 0.3 σ , with similar improvements expected in other physics searches with b-quarks in the final state
- These results, based on a simplified Gaussian model for track-time resolution, motivate future in-depth studies to incorporate a preliminary layout with more realistic detector assumptions, as well as more sophisticated reconstruction algorithms covering the full range of physics capabilities

Where does the improvement come from?

Pileup track rejection, as expected \checkmark

Track-by-track classification improves ONLY for the PU track category

light-quark and gluon jet rejection improves as a function of PU jet contamination

Impact on HH→4b

5% efficiency improvement \Rightarrow 0.3 discovery significance

Sensitivity enhancement of 500fb⁻¹ of data

Actual improvement will depend on when upgrade happens: Run5 or Run 6

Motivations to extend timing capabilities in the central region beyond Run 4

- Forward PU jet suppression:
 - z0 resolution (forward) > PU
 vertex separation → track-vertex association ambiguity
 - o Detector resolution effect

b-tagging:

- z0 resolution << PU vertex separation
- Physics of B hadron decays → large displaced z0 tracks → large z0 window to select tracks > PU vertex separation
- o **Physics effect**

Fast timing in Higgs Factories

Suppression of beam induced backgrounds at muon colliders

Full 4D tracking

Time of Flight for Particle ID at low momentum and Long Lived particles

Timing layers

Exploit the time structure of hadronic showers to enhance PFA and improve jet energy resolution

5D Calorimetry

Timing layers or volumetric timing