InAs/GaAs Quantum Dot Scintillator for 4D Tracking Applications

<u>T. Mahajan¹</u>, A. Minns¹, V. Tokranov¹, M. Yakimov¹, P. Murat², M.T. Hedge², and S. Oktyabrsky¹

¹State University of New York at Albany, Albany, NY 12203 USA ²Fermi National Accelerator Laboratory, Batavia, IL 60510 USA

- Motivation: InAs QD scintillation detector
- Structure and principle of operation
- Recent results: decay, efficiency, energy resolution
- Towards MIP detection
- Radiation Hardness
- Summary

Nanomaterial Based Scintillator with Unique Properties

Very Promising Material – InAs/GaAs Quantum Dot Scintillator

- High Light Yield (240,000 Photons/Mev)
- Fast Luminescence Time (<1ns)
- **Integrated Photodetector**
- **Radiation Hard**
- **Room Temperature Operation**
- **Low Power**

	GaAs	Si
e⁻ Mobility, µ	8500 cm ² V ⁻¹ s ⁻¹	1400 cm ² V ⁻¹ s ⁻¹
# e ⁻ -h pair generated by MIP	163 pairs/µm	80 pairs/µm

Growth and Fabrication of InAs/GaAs Scintillator

- Medium is grown as thin film heterostructure using molecular beam epitaxy
- Photodetector is monolithically integrated in same epitaxy growth
- Compatible with full-wafer processing similar to Si technologies

InAs QD Detector Schematic

Monolithic Photodetector Integration Scheme

The detector is grown, fabricated and tested in CNSE's Clean room and further testing is being done in FNAL

Moving from Charge Drift to Light Collection

Collects photons not carriers

The detector consists of three integrated systems:

- QD/semiconductor as a radiation stopping material
- Waveguide for QD emission
- Photodiode for optoelectronic conversion

Signal Formation in InAs QD Scintillator:

- QD does not start emitting light until electrons reach QDs and start recombining
- Total jitter time including drift and capture process is **10 ps**
- As the capture is complete generated light output peaks and undergoes exponential decay
- Luminescence decay is dictated either radiative or non-radiative recombination

Measurement of 5.5 MeV Alpha Particle

- Light collection is limited by losses due to surface scattering and self-absorption
- Sub 0.1 ns scintillation risetime
- Energy resolution, $\Delta E/E = 7.2\%$

• The response of detector is dictated by **light collection efficiency and geometry**

Low Energy Photon Measurement with InAs QD Detector

- Alpha particles (Am-241) were screened by 150 µm polymer sheet
- Tail of charge distribution is observed
- The response is currently limited by system noise
- Charge collection greater than 166 ph. e/keV
- Possible Birks quenching in scintillator

Moving towards MIP Detection with InAs QD Scintillator

Projected performance of QD scintillator detector

• Fixed scintillator decay time (300ps) \rightarrow Rise time reduces with deposited energy • Lower detector/total capacitance is needed for fast timing and low noise operation Front-end electronics with optimal resistance load enables <100 ps timing resolution • Leading edge signal shape of the scintillator/PD device for MIP in thicker device

Moving towards MIP Detection with InAs QD Scintillator

- Timing resolution is improved in thick scintillator (speed of light ~ 10^3 x higher than drift velocity)
- The major source of noise is resistive load
- 10 ps timing resolution is feasible without avalanche multiplication

However,

- Challenges associated with growing >50 µm thick scintillator
- Different approaches needed to make thicker scintillator material – epi to bulk

MIP Detection \longrightarrow thick detector \longrightarrow improved timing resolution

Engineering of Radiation Hard InAs Quantum Dots

Effect of 1MeV H⁺ irradiation on QD photoluminescence

- Proton generates displacement defects along its path
- Degradation of the PL due to non-radiative recombination on these defects
- The **highest radiation hardness** is observed in QDs embedded in AIAs/GaAs superlattice structure, corresponding to $AI_{0,2}Ga_{0,8}As$ alloy
 - Highly localized states of carriers in QDs
 - Lower probability for carriers to escape the QDs and recombine non-radiatively

InAs Quantum dots can be designed to be radiation hard by hosting it in high barrier matrix

- timing resolution.
- PD) at room temperature
 - fastest and highest light-yield of any known scintillator
 - still only 10% of expected performance
- maximum 240 ph.e/keV in GaAs)
 - currently limited by readout noise
 - possible Birk's quenching
- We have assessed radiation hardness with 1MeV H⁺ up to 10¹⁴ cm⁻² only 2x reduction

• We have demonstrated detector technology based on quantum dot embedded in GaAs semiconductor capable of ps

• We have measured 10,000 ph. e /MeV, 100 ps rise time with α -particles in photovoltaic mode (no bias voltage on

• Preliminary 60keV photon measurement demonstrated charge collection greater than 150 ph. e/ keV (theoretical)

