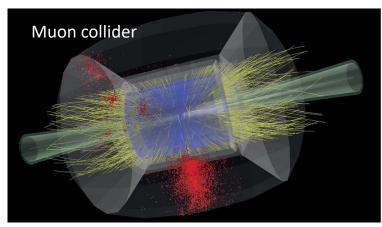
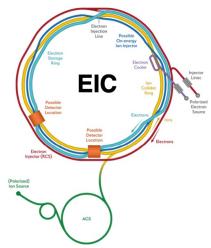
#### 



# Development of CMOS Sensors for HEP with a US-based foundry

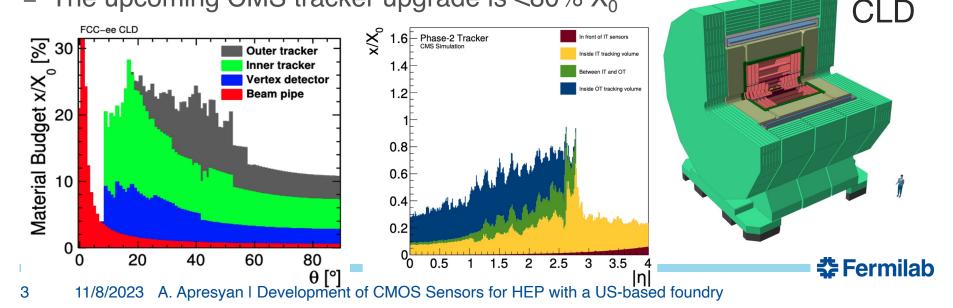

Fermilab: <u>A. Apresyan</u>, M. Alyari, N. Bacchetta, D. Berry, T. England, F. Fahim, R. Lipton; Purdue: M. Liu, M. Jones; University of Chicago: K. Di Petrillo; University of Illinois Chicago: C. Mills

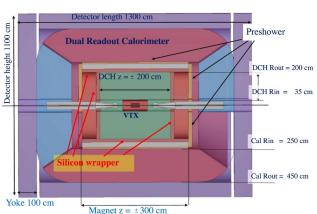

> CPAD 2023 08 November 2023

#### **Motivation**

- The HEP community is planning the next major collider
   Higgs factory, FCC<sub>ee</sub> recommended by Snowmass
- Tracking system will play decisive role for FCC<sub>ee</sub> physics goal
  - A low mass tracker is required to provide measurements with a low enough systematic error to match the tremendous accumulated statistics
- Recent developments of low-mass, low-power and low-cost CMOS MAPS make this the preferred option for FCC<sub>ee</sub>.



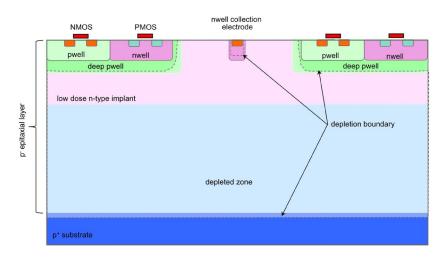





# **Requirements**

- Physics goals
  - Identify b/c quarks and tau leptons from Higgs
  - Perform a precise measurements of the **Z boson**
- Require a 5 µm spatial resolution, angular resolution of 0.1 mrad
- Very low mass budget
  - First detector layer material budget of 0.2% X<sub>0</sub>
  - Total tracking material budget <30% X<sub>0</sub>
  - The upcoming CMS tracker upgrade is <80% X<sub>0</sub>






IDFA

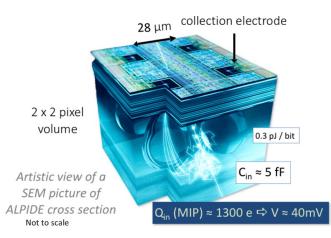
# **Sensor Proposal**

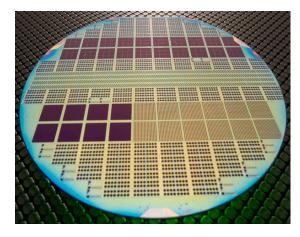
- Monolithic Active Pixel Sensors (MAPS), Low Gain Avalanche Diodes (LGADs), and Single Photon Avalanche Diodes (SPADs)
   Critical components in trackers and calorimeters
  - Childer components in trackers and caloninet
- Fabricated in a standard CMOS process
  - Excellent spatial resolution (~5  $\mu$ m)
  - Low-power consumptions (<40 mW/cm<sup>2</sup>)
  - Low mass (~0.05 X<sub>0</sub>)
  - Low cost for large volume fabrication








# **CMOS Sensors Vision**


#### • GOALS

- US manufactured sensor capability for HEP experiments
- Optimize the process towards HEP sensors
- Co-design sensor and readout electronics
- Broad adoption of development in community

#### • HOW?

- Partner with Skywater Technologies
- Strong support from UC, UIC, Purdue, UIUC, Cornell, for device simulation and testing
- Engineering run with various designs
- Testing of sensors at Fermilab and partners







#### **Commercial Partner**

- Most advanced process among HEP MAPS
  - Fabricated on SkyWater's **90 nm** process
  - Demonstrate domestic production for future HEP experiments
- We will work with SkyWater to modify their standard epitaxial silicon layer
  - Adapt and optimize SkyWater process to develop particle detectors
  - Use thicker, higher-resistivity epitaxy with deep-well implants on a standard CMOS substrate
  - The standard CMOS process flow can then be used to fabricate IC resulting in a monolithic sensor with integrated signal processing

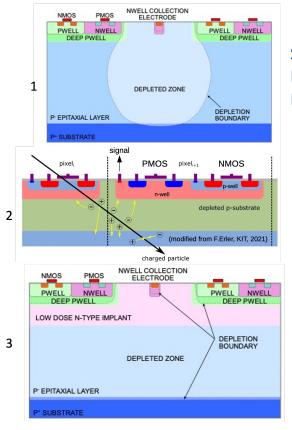


# HEP CMOS Sensors vs CMOS Image Sensors (CIS)

- Although similar in concept HEP CMOS sensors differ from CIS devices
  - Charge generated in HEP sensors is distributed along a particle track → no need for a transparent entrance window. As much of this charge as possible should be collected.
  - Pixels can be large:  $20 50 \ \mu m$
  - The collection region should be fully depleted if possible. We aim for ~ ns charge collection.
  - The collection well contains complex circuitry: amps, discriminators, logic..
  - Fields near the n-well limit the applied bias due to breakdown to the epi.
    HVCMOS can be used extend the bias voltage. This effect can also be mitigated by additional deep implants.



# **CMOS MAPS variants for DOE HEP**


- a. MAPS
- b. MAPS for timing
- c. LGADs
- d. CMOS LGADs e. SPADs

Unbiased small n-well collection electrode surrounded by deep pwells

N-well collection electrodes with embedded CMOS

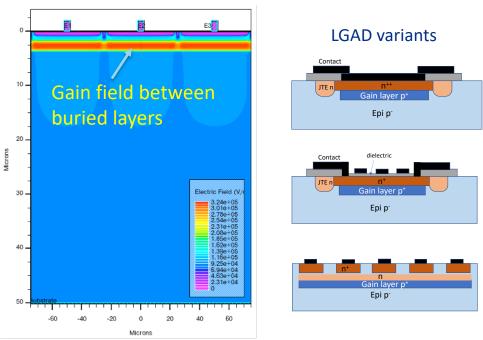
Small collection electrode with n-type "buffer" implant.

Others as well



Slow speed Low capacitance Rad soft

Fast, high load capacitance

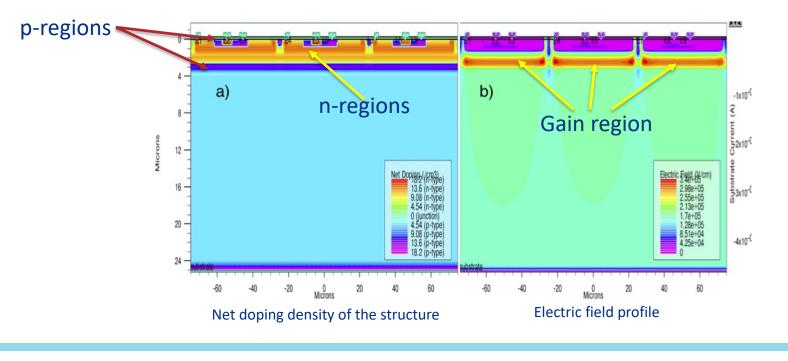

Fast, Low capacitance Delicate design



# LGADs

- Low Gain avalanche diode
  - MAPS devices with linear gain
  - Deep buried junction to isolate gain field from CMOS wells
- High energy implants or graded epitaxy

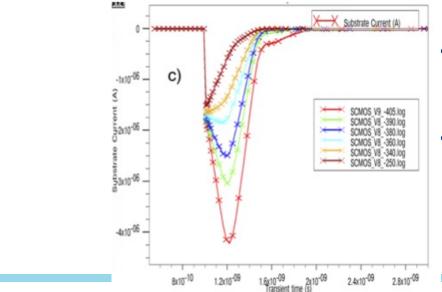
#### Electric Field, CMOS LGAD






# **Simulations**

- TCAD simulations were used to establish the feasibility of the proposed work, and we started discussions with SkyWater.
  - The initial TCAD studies for SkyWater CMOS are based on our previous work to establish designs for 8" sensor wafer production


🚰 Fermilab



10 11/8/2023 A. Apresyan I Development of CMOS Sensors for HEP with a US-based foundry

# **Simulations**

- Depleted CMOS sensor operation can be limited by the fields in the region of the deep wells causing breakdown or affecting transistor operation.
  - Processes designed for HV operation have been studied in RD50
  - While the SkyWater 90 nm process is not an explicit HV design, it is likely compatible with the fields in fully depleted sensors
  - Can mitigate the fields near the wells with deep n-implant



- Substrate current pulses for bias voltages from 250 (brown) to 405 (red) volts showing the onset of gain.
- Rise time of the top electrodes will be determined by the details of the CMOS well capacitance



11 11/8/2023 A. Apresyan I Development of CMOS Sensors for HEP with a US-based foundry

# **Sensor Integrated Readout Electronics**

- A critical element is fast and low-power read-out electronics, whose properties must match those of the sensors
  - Investigate IC techniques and co-design basic building blocks to facilitate the readout of various sensors.
  - Basic readout circuits to extract pixelated sensor performance
  - The design will focus on the basic analog blocks with a rollingshutter read-out of the pixel arrays.
  - This will enable the measurement of the sensor performance and characterize variations across the pixel matrix.



# **Project Deliverables**

- Design and manufacture sensors using SkyWater's 90 nm CMOS process
- Create a HEP specific MPW run
  - Reticle divided into dies of varying designs: ½ wafer with only sensors and
    ½ wafer with sensors & readout circuits
  - Perform detailed characterization of MAPS, LGAD, and SPAD detectors, and quantify their performance for HEP
- Create a US-based silicon sensor manufacturing facility for next generation HEP/NP experiments
  - Enable US-teams to lead the design and fabrication of tracking detector(s) for a future Higgs factory
  - Enable a broad participation of university groups in cutting edge instrumentation



# Summary

- Establish a US based CMOS manufacturing process
  - Target applications are FCC<sub>ee</sub> and other HEP and NP experiments that require low-mass, high-speed, precise charged particle tracking.
- Lays the foundation of CMOS sensor manufacturing in the Unites States
  - A stepping stone for the domestic fabrication of the next generation of tracking sensors
- Integration with the ongoing international efforts within DRD3 and DRD5 efforts
  - Development of tracker and calorimeter designs for the Higgs factories

