CPAD 2023

NAPA-p1: Nanosecond Timing Pixel for Large Area Sensors

<u>Alexandre Habib¹</u>, Christos Bakalis¹, James E. Brau², Martin Breidenbach¹, Lorenzo Rota¹, Caterina Vernieri¹ and Angelo Dragone¹

¹ SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

² Department of Physics, University of Oregon, Eugene, OR 97403, USA

*Correspondence: alexhab@slac.stanford.edu

November 8, 2023

- Application: Future e+e- Colliders
- Target Specifications Vs State of the Art
- SLAC Development: NAPA_p1
- Going Towards a Large Area Sensor
- Conclusion & Perspectives

Future Linear e+e- Colliders

Designed to work ad Higgs Factory driving the requiring for detectors:

- Material budget <0.3% X₀
- Gas cooling \rightarrow Very low average power consumption
- Spatial resolution: 5 µm
- Time-tagging in the order of O(1ns)

ILC Timing Structure

Events 400

300

200

100

e

110

120

Toy MC Data

Background

 $e^++e^- \rightarrow \mu^+\mu^- + X @ 250 \text{ GeV}$

140

Recoil Mass (GeV/c²)

Signal

130

Signal+Background

150

Specifications from Physics to Pixel

Specification	Physics	Pixel
Input charge	Minimum Ionizing Particle (MIP)	Assuming epitaxial layer of ~ 10 μ m MIP goes through pixel center generates ~ 600 e- MIP shared between 4 pixels \rightarrow ~ 150 e-
Noise	Negligeable fake hits	Noise $< \frac{Min Input Charge}{5} \Rightarrow$ ENC $< 30 \text{ e-rms}$
Time resolution	Identity bunches within a train (C ³)	Time resolution < 1 ns-rms for whole chain considering : sensor, front-end, time walk, TDC
Average Power Consumption	Gas cooling	Depends on detector total area, used gas, and allowed increased in temperature. Initial estimation to be confirmed 20 mW/cm ²
Spatial resolution	~ 5 μm	Pixel pitch 25 μm

These initial specifications serve as a baseline for the first prototype developed at SLAC : NAPA-p1

- Application: Future e+e- Colliders
- Target Specifications Vs State of the Art
- SLAC Development: NAPA_p1
- Going Towards a Large Area Sensor
- Conclusion & Perspectives

Chip name	Technology	Pixel pitch [µm]	Pixel shape	Time resolution [ns]	Power Density [mW/cm ²]	
Target Specification	?	≤ 25 x 100	Sq / rect	1	< 20	No design fulfills all target specification ➔
	Tower 180 nm	28	Square	< 2000	5	The need to develop a
FastPix ^{[4][5]}	Tower 180 nm	10 - 20	Hexagonal	0.122 – 0.135	>1500	custom design
DPTS ^[6]	Tower 65 nm	15	Square	6.3	112	
Cactus ^[7]	LF 150 nm	1000	Square	0.1-0.5	145	
MiniCactus ^[8]	LF 150 nm	1000	Square	0.088	300	
Monolith ^{[9][10]}	IHP SiGe 130 nm	100	Hexagonal	0.077 – 0.02	40 - 2700	

We decided to go with the Tower 65nm technology, which has been optimized by CERN WP1.2 to have low sensor capacitance allowing very good performance with low power consumption.

- + it has the possibility of a wafer-scale stitched sensor
- + it has been proven to be radiation tolerant

Tower Semiconductor 65 nm Imaging technology

Thanks to CERN WP1.2 effort on sensor optimization in TowerSemi 180 nm and 65 nm technologies ^{[12] [13]}

• \rightarrow C_{sensor} of 2-3 fF is achievable while maintaining high collection efficiency.

This is very useful from a pixel performance point of view as:

For a constant SNR and $Q_{in} \rightarrow Power \propto (C_{sensor})^m$ with $2 \le m \le 4$ as shown in [11]

Sensor optimization in TowerSemi 180 nm process from [12] and [13]

- Application: Future e+e- Colliders
- Target Specifications Vs State of the Art
- SLAC Development: NAPA_p1
- Going Towards a Large Area Sensor
- Conclusion & Perspectives

NAPA_p1: NAnosecond Pixel for large Area sensors – Prototype 1

- The prototype design submitted with a total area 5 mm x 5 mm and a pixel of 25 μ m × 25 μ m, to serve as a baseline for sensor and pixel performance.
- Design motivation → Synchronous architecture (known beam time structure), Correlated Double Sampling, eliminating low frequency noise, allowing use of minimum size transistors
- Power pulsing \rightarrow reduce average power consumption by more than 100

Layout of MAPS SLAC prototype for WP1.2 shared submission

9

Simulation of Jitter and ENC as a Function of C_{sensor}

These simulations are with a nominal pixel current of 600 nA → <Power density> = 115 mW/cm² x duty cycle For e+e- machines such as ILC and C³, duty cycle is expected < 1%

Simulation Results : Jitter and Time Walk

Jitter Time Walk 6.12E-06 1.4 $C_{sensor} = 2 \text{ fF}$ 6.10E-06 1.2 Time of Arrival [s] MIP/4 Jitter [ns-rms] MIP 6.08E-06 1 8.0 6.06E-06 0.6 6.04E-06 0.4 6 ns 6.02E-06 0.2 nominal 0 6.00E-06 100 200 300 400 500 0 100 200 300 400 500 600 0 Input Charge [eletrons] I_bias [nA] I_bias = 200 nA \equiv pixel current = 600 nA Time walk for MIP \rightarrow MIP/4 = 16 ns From theory we expect : $\sigma_{FE} \propto \frac{1}{(Power)^{\frac{1}{n}}}$ with $1 \leq n \leq 2$ Not negligeable and must be corrected (in pixel? In balcony? Offline? TBD)

Timing Limits for a Complete Detection Chain

Assuming time walk is fully corrected $\Rightarrow \sigma_{Total} \sim 500$ ps-rms with reasonable pixel power consumption, going lower will cost increasingly more power, not compatible with large area sensors Accounting for residual time Walk after correction, and other non-idealities, it is reasonable to aim for ~1 ns-rms time resolution

Summary of NAPA-p1 Performance

	Specification	Simulated NAPA-p1
Time resolution	1 ns-rms	0.4 ns-rms
Spatial Resolution	7 μm	7 um
Noise	< 30 e-rms	13 e-rms
Minimum Threshold	200 e-	~ 80 e-
Average Power density	< 20 mW/cm ²	0.1 mW/cm ² for 1% duty cucle

The chip was received at SLAC in September 2023

Microscope photo of NAPA-p1

Acknowledgement: to CERN WP 1.2 for the excellent cooperation: NAPA-p1 uses the pixel masked developed and optimized by CERN, and was fabricated in a shared run led by CERN

Test Setup for NAPA-p1

- A custom carrier was designed at SLAC for the NAPA-p1 chip providing all analog references
- The chip was wire-bonded at SLAC
- The carrier board connects to a digital board containing an FPGA and several DAC's

Carrier Board

Preliminary Characterization Results

Functional Testing

ENC measurement

- Injection cap not calibrated yet. A Laser setup is needed for that. Design value is used for C_{inj}
- ENC value is close to simulation ~ 13 e-rms for C_{sensor} = 2 fF
- ENC value satisfies the specification < 30 e-rms
- More measurements to be available soon

- Application: Future e+e- Colliders
- Target Specifications Vs State of the Art
- SLAC Development: NAPA_p1
- Going Towards a Large Area Sensor
- Conclusion & Perspectives

Going Towards a Large Sensor → Challenge

$$\begin{split} \Delta V &= I_{pix} \times R_{Pix} + 2 \times I_{Pix} \times R_{Pix} + 3I_{Pix} \times R_{Pix} + \ldots + N \times I_{Pix} \times R_{Pix} \\ \Delta V &= I_{Pix} \times R_{Pix} (1 + 2 + 3 + \ldots + N) \\ \Delta V &= I_{Pix} \times R_{Pix} \times \frac{N(N+1)}{2} \end{split}$$

Assuming :I_{pix} = 600 nA and R_{pix} = 300 m Ω

Assuming pixel of 25 μ m x 25 μ m

A column of 10 cm would have 4000 pixels

Double sided powering

→ max drop length = 2000 pixels

VDD-GND goes from 1.2 V near the power pads down to around 480 mV after 2000 pixels

The main limitation comes from large scale power distribution rather than cooling constraints

After 10³ pixels (reticle, 2.5 cm), $V_{drop} \approx 0.1 V$ After 4 x 10³ pixels (sensor, 10cm), $V_{drop} = 1.5V$!

Going Towards a Large Sensor \rightarrow Solutions

Potential solutions to address the power distribution over a large scale:

- Decrease power density → Physics requirement are for a pixel of 25 µm x 100 µm. Our initial study shows that a pixel of 25 µm x 50 µm gives the best optimization for Power Density
- 2. Reduce $R_{pix} \rightarrow Redesign of power grid$
- 3. Keep power constant → Switch from a single ended to a differential comparator
- 4. Reduce the column length → Target sensor of 5 cm x 20 cm instead of 10 cm x 10 cm
- 5. Backup plan: develop capless LDO regulator → ongoing shared effort with CERN WP1.2
- 6. \rightarrow NAPA-p2 design has started to tackle these challenges

Potential Configuration of NAPA-p2

- Application: Future e+e- Colliders
- Target Specifications Vs State of the Art
- SLAC Development: NAPA_p1
- Going Towards a Large Area Sensor
- Conclusion & Perspectives

Conclusion & Perspectives

- MAPS has great a potential to fit the future e+e- colliders requirements (tracker, calorimeter)
- Simulations of NAPA_p1 show that it is possible to achieve a time resolution ~ 1 ns-rms with reasonably low power consumption of ~100 mW/cm² × Duty Cycle. For e+e-machines duty cycles are typically < 1%
- We've just received the NAPA-p1 chip and the first characterization results are promising. NAPA-p1 will serve as a pixel proof of concept.
- Design of NAPA-p2 has started to tackle large sensor challenges. NAPA-p2 will serve as a system proof of concept.
- These prototypes are customized for linear lepton colliders with low duty cycle, however, many of the developed technical solutions can be of value to other applications (large area stitched sensor with increased yield, power distribution, IP blocks (capless LDO regulator, TDC,...)

Microscope photo of NAPA-p1

SLAC

Thank You For Your Attention!

- [1] Brau JE, Breidenbach M, Habib A, Rota L, Vernieri C. The SiD Digital ECal Based on Monolithic Active Pixel Sensors. *Instruments*. 2022; 6(4):51. https://doi.org/10.3390/instruments6040051
- [2] Gianluca Aglieri Rinella, "The ALPIDE pixel sensor chip for the upgrade of the ALICE Inner Tracking System, Nuclear Instruments and Methods in Physics Research, Volume 845,2017, https://doi.org/10.1016/j.nima.2016.05.016
- [3] M. Mager, "ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITS upgrade", Nuclear Instruments and Methods in Physics Research, Volume 824, 2016, https://doi.org/10.1016/j.nima.2015.09.057
- [4] T. Kugathasan *et al.,* "Monolithic CMOS sensors for sub-nanosecond timing", Nuclear Instruments and Methods in Physics Research, Volume 979, 2020, https://doi.org/10.1016/j.nima.2020.164461.
- FASTPIX CMOS Pixel Demonstrator", [5] J. Braach et al., "Performance of the Sub-Nanosecond Sensor Instruments 2022, 6(1), 13; https://doi.org/10.3390/instruments6010013
- [6] G.A. Rinella et al. "Digital Pixel Test Structures implemented in a 65 nm CMOS process" https://doi.org/10.48550/arXiv.2212.08621

[7] Y. Degerli et al 2020 JINST 15 P06011 DOI 10.1088/1748-0221/15/06/P06011

- [8] Y. Degerli et al., "MiniCACTUS: Sub-100 ps timing with depleted MAPS", Nuclear Instruments and Methods in Physics Research, Volume 1039, 2022, https://doi.org/10.1016/j.nima.2022.167022.
- [9] S. Zambito et al 2023 JINST 18 P03047 DOI 10.1088/1748-0221/18/03/P03047
- [10] L. Paolozzi "A Picosecond Avalanche Detector in SiGe BiCMOS' ULITIMA Conference 2023
- [11] W. Snoeys, Monolithic Pixel Detectors for High Energy Physics, Nuclear Instruments and Methods in Physics Research A 731 (2013) 125–130
- [12] M. van Rijnbach et al., Radiation hardness and timing performance in MALTA monolithic pixel sensors in TowerJazz 180 nm, 2022 JINST C04034

[13] M. Munker et al., Simulations of CMOS pixel sensors with a small collection electrode, improved for a faster charge collection and increased radiation tolerance,2019 JINST 14C05013

SLAC