A Cryogenic Witness Detector for Low-Energy Neutron Backgrounds

A.N. Villano University of Colorado Denver

Neutrons are (still) DM Backgrounds

• Thermal neutrons (which predominately create captures) have been traditionally not important b/c their backgrounds are very low energy. Now, they are because of the low-energy reach of new detectors.

K. Harris; A. Gevorgian; A.J Biffl, A.N. Villano; Physical Review D (PRD) **107** 076026 (2023)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.076026

Also: neutrons in the energy range 1 keV – 1 MeV will quickly create thermal fluxes and have their own impact in this energy range via elastic scattering.

Neutron Backgrounds Underground: SNOLAB

- One of the lowest-flux environments for neutrons is the SNOLAB underground lab
- Only the thermal neutron flux and "fast" neutron flux (> 1 MeV) are measured

Villano, A.N.; Journal of Low Temperature Physics (LTD20); under review

³He Detectors: Used for Decades

- Gaseous ³He detectors have been used for many years to detect neutrons for two main reasons:
- The process ³He(n,p) has a high cross section and;
- Displays a mono-energetic peak that maps directly to the incoming neutron energy

Sharbaugh, A.E., Jones, L., Villano, A.N.; Journal of Undergraduate Reports in Physics (JURP); in press

https://arxiv.org/abs/2305.00145

³He Detectors: Liquid Design

- SPICE/HeRALD collaboration demonstrated phototube readout (see: Phys. Rev. D 105 092005 (2022))
- Density boost of ³He is between a factor of 64 – 107x compared to gas detectors of 4—10 atm partial pressure
- Hermetic design with copper vessel shown at right; copper is important for background mitigation (see later slides)

Sharbaugh, A.E., Jones, L., Villano, A.N.; Journal of Undergraduate Reports in Physics (JURP); **in press** https://arxiv.org/abs/2305.00145

Gaseous ³He Performance: HALO @ SNOLAB

- Compare to HALO detector at SNOLAB: 0.75 m³ of ³He gas at 2.5 atm partial pressure
- Very low neutron flux environment.
- In 1 year of running will reach 11,000 neutron counts in the 1 keV and above region but will also have around 140,000 alpha background events from surfaces
- These tubes are probably the lowest background available with 1 ppt thorium contamination (see NIMA 449(1) p 172 (2000))

Liquid ³He: 8 cm³ @ SNOLAB

- Same very low neutron flux environment as HALO
- Only 30 total neutron events over 1 yr of running in the region 1 keV—1 MeV compared to 11,000 ...BUT...
- Small volume can be integrated into or near other detectors; including deep cryogenic ones as a witness
- Expect ~ 100 bknd alpha events dominated by PMT (might be able to remove)

Sharbaugh, A.E., Jones, L., Villano, A.N.; Journal of Undergraduate Reports in Physics (JURP); **in press**

https://arxiv.org/abs/2305.00145

Liquid ³He Performance: Background Budget

- Alpha backgrounds from surface are dominant, other ambient gammas or (α, n) from detector less important
- Use low-background copper
- If modifications can be done to remove PMT readout (maybe with TES or MKID detector coupled to silicon substrate inside the hermetic volume), then we can have signal-to-noise of around 217 for this detector

Component	Contamination Level (ppt)	Background ($\alpha/{ m yr}$)	Best signal-to-noise ¹	
standard copper ²	39	179	0.10	-
ultra clean $copper^3$	0.03	0.138	0.26	
quartz window ⁴	2	1.9	0.26	
TPB coating	120	112	0.26	
¹ assuming all other con ² Copper wire used in t ³ as demonstrated by th ⁴ as demonstrated by th	mponents optimized for low b he Majorana project [13] he Majorana project [13] using he EXO project [14]	ackground with photor g electroformed copper	Large, PMT-related nultiplier readout	backgrounds

Villano, A.N.; Journal of Low Temperature Physics (LTD20); under review

Prototype Design:

- 1. Build a low-cost L⁴He prototype on a 2" KF-50 dipstick and put into LHe Dewar
- 2. Test for scintillation yield with neutrons and gammas—
- 3. Design a ³He system to keep detector volume on a closed cycle; can pump on Dewar volume to reach lower temperatures for ³He liquification
- 4. Test with neutrons of reasonable between 10 keV and 1 MeV; can use neutron beam such as at Notre Dame
- 5. Re-design the detector volume with clean copper for deployment as a low-flux detector
- 6. Possible re-design without PMT

Initial ⁴He Design and Costs

- Simple initial design for liquid ⁴He using mostly off-the-shelf parts and a capillary tube to a small LHe volume
- Read out with a Hamamatsu 2 cm x 2 cm square PMT through a quartz window
- TPB coating as a LHe wavelength shifter
- About \$30k including 1 extra PMT and electronics and ~ \$11k of LHe
- \$11k of LHe is for 10 60L Dewars which last around 10—15 days of running each (unless include boiloff mitigation).

Warm End: Design by Weijun Yao @ ORNL

CPAD Workshop 2023

Summary

- Backgrounds from neutron energies that have traditionally been overlooked are important now! All the way from 1 MeV to thermal energies
- It's hard to get a precise measurement of flux there; best bet is to use the ³He(n,p) process
- Liquid ³He detectors can offer advantages in compactness, and radiopurity
- Prototyping is underway
- See QR code for talk slides