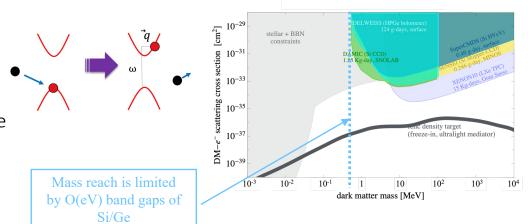


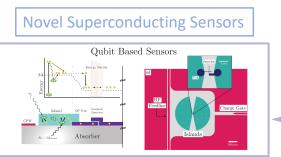
Novel Quantum Material Based Detectors for Probes of Beyond the Standard Model Physics

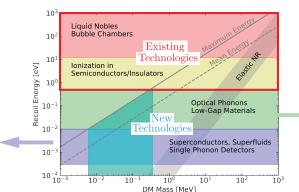
Caleb Fink Directors Postdoc Fellow - LANL

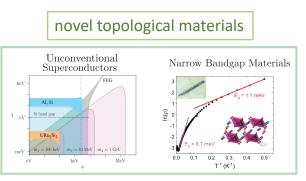
LA-UR-23-32612

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA.

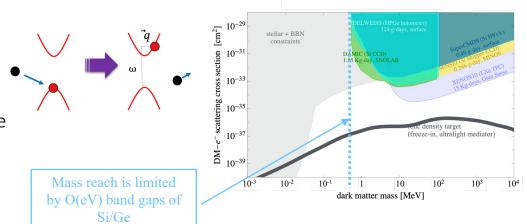

Novel Quantum Materials as Probes of BSM Physics

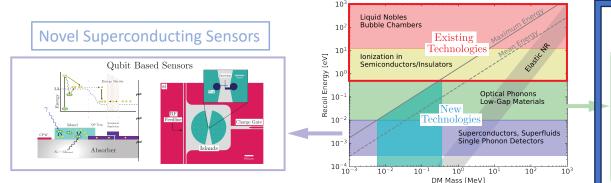

- Light Dark Matter Detection Electronic Recoils
 - Novel narrow bandgap Semiconductors with the SPLENDOR experiment
 - Development of low noise charge sensitive devices
 - Leveraging unconventional superconductors as sensors
- <u>Nuclear Recoils on the meV scale</u>
 - CEVNS detection with novel materials
 - Qubit based athermal phonon sensors
- High Efficiency Gamma Ray detection with High-Z dense materials

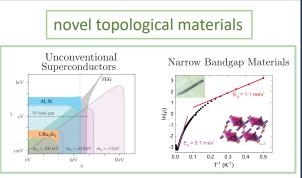



Searching for Dark Matter Below the MeV Scale

- Low kinetic energy of dark matter requires targets sensitive to very small energy depositions
- Existing detection technologies (Si, Ge) have O(eV) energy thresholds
- Probing fermionic DM masses below MeV requires new detection techniques







Searching for Dark Matter Below the MeV Scale

- Low kinetic energy of dark matter requires targets sensitive to very small energy depositions
- Existing detection technologies (Si, Ge) have O(eV) energy thresholds
- Probing fermionic DM masses below MeV requires new detection techniques

4

Landscape of Low Bandgap Semiconductors

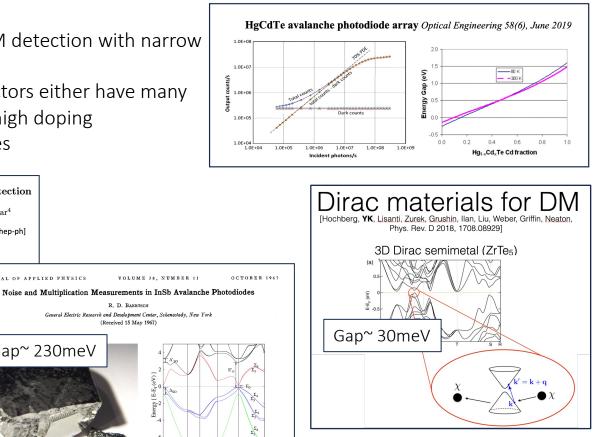
- Many ideas in recent years for DM detection with narrow bandgap semiconductors
- Existing low bandgap semiconductors either have many impurity states or disorder from high doping

arXiv:2212.04504 [hep-ph]

IOURNAL OF APPLIED PHYSICS

Gap~ 230meV

R. D. BAERTSCH


Both result is large dark rates

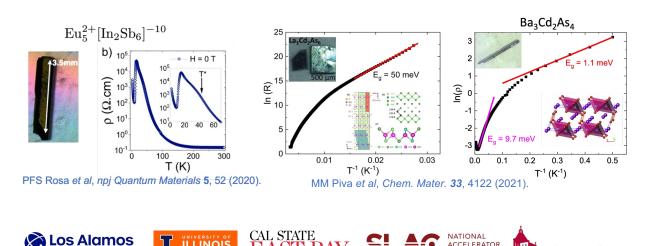
Doped Semiconductor Devices for sub-MeV Dark Matter Detection

Peizhi Du,¹ Daniel Egaña-Ugrinovic,² Rouven Essig,³ and Mukul Sholapurkar⁴

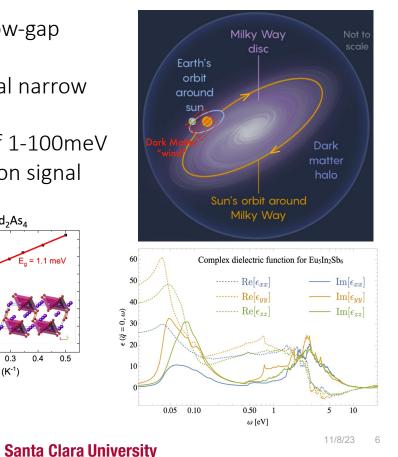
p-type semiconductor

n-type semiconductor

Conduction band

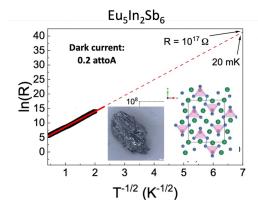

Valence hand

 E_{i}

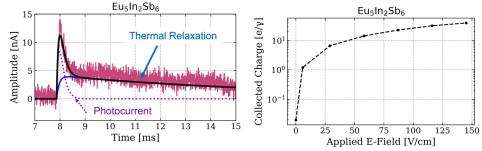

pure semiconductor

Novel Narrow Bandgap Semiconductors for SPLENDOR

- Search for particles of Light dark matter with narrow-gap semiconductors - SPI FNDOR
- Los Alamos funded project developing single-crystal narrow ٠ bandgap semiconductors
- Candidate materials have bandgaps in the range of 1-100meV ٠
- Anisotropic bandgaps sensitive to daily modulation signal •



LLINOIS

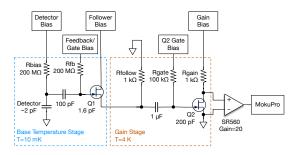

SPLENDOR Material Response

Materials used as point contact ionization detectors – resolution scales as bandgap and amplifier noise

Single crystal synthesis allows for very pure samples low dark counts over large crystal volumes

Candidate materials showing photo response to IR light – beginning to reach full charge collection

hv

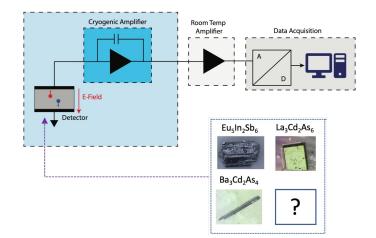

Current Response

Integrated Charge

Time

Material Independent Charge Readout

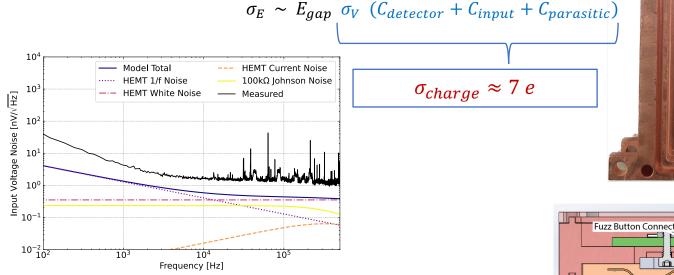
- SPLENDOR is developing a *material independent* cryogenic HEMT based charge readout
- Two stage amplifier using low capacitance CryoHEMTs
- Will allow for the rapid prototyping of any insulating material



arXiv:2311.02229 [physics.ins-det]

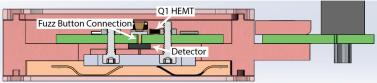
Detector housing and amp topology keep total capacitance at O(1 pF)

$$\sigma_E \sim E_{gap} \sigma_V \left(C_{detector} + C_{input} + C_{parasitic} \right)$$


A. Phipps RDC4 poster session

Path to Single-Charge Sensitive Amplifier

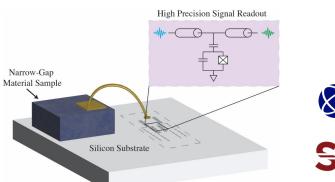

- Prototype amplifier has has an integrated noise of 7 electrons
- Fully optimized version of the amplifier should reach 2-3 electron resolution



Two-Stage Cryogenic HEMT Based Amplifier For Low Temperature Detectors

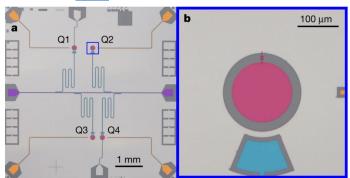
J. Anczarski,^{1, 2, 3, *} M. Dubovskov,⁴ C. W. Fink,⁵ S. Kevane,^{1, 2, 3} N. A. Kurinsky,^{2, 3} S. J. Meijer,⁵ A. Phipps,⁶ F. Ronning,⁵ I. Rydstrom,⁴ A. Simchony,^{1, 2, 3} Z. Smith,^{1, 2, 3} S. M. Thomas,⁵ S. L. Watkins,⁵ and B. A. Young⁴

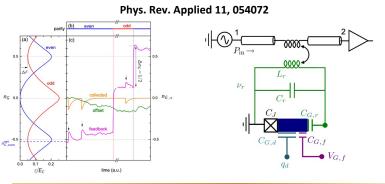
¹Stanford University, Stanford, CA 94305, USA
 ²SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
 ³Kavli Institute for Partic Astrophysics and Cosmology, Stanford University, Stanford, CA, 94035, USA
 ⁴Santa Clara University, Santa Clara, CA 95053, USA
 ⁵Los Alamos National Laboratory, Los Alamos, NM 87515, USA
 ⁶California State University, East Bay, Hayward CA 94542, USA



Qubit based charge Amplifier

- Ultimate utility of materials can only be achieved with single charge sensitivity
- Recently given KA25 funding to develop a qubit-based charge amplifier to replace HEMT readout
- Plan to fabricate cooper-pair box based structures on silicon substrate externally couple detector contact to charge gate of qubit


Exploring two low capacitance connections:


- 1. Wirebonding sample to qubit gate
- 2. Modifying SPLENDOR HEMT housing

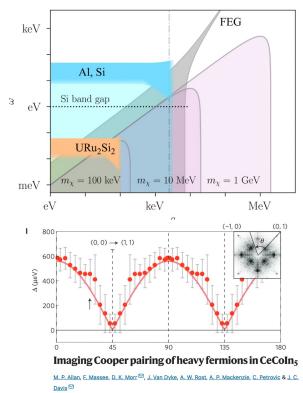
Nature volume 594, pages 369–373 (2021)

Novel Quantum Materials as Probes of BSM Physics

- Light Dark Matter Detection Electronic Recoils
 - Novel narrow bandgap Semiconductors with the SPLENDOR experiment
 - Development of low noise charge sensitive devices

Leveraging unconventional superconductors as sensors

- <u>Nuclear Recoils on the meV scale</u>
 - CEVNS detection with novel materials
 - Qubit based athermal phonon sensors
- <u>High energy Gamma Ray detection with High-Z dense materials</u>

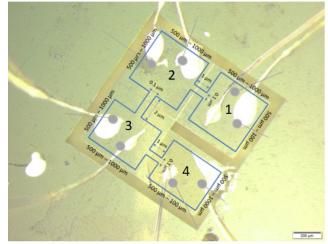

Heavy Fermion Superconductors for Dark Matter

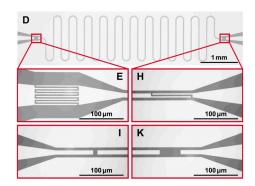
- Class of novel materials with strong light dark matter coupling
- f-electrons hybridize with conduction elections
 - results in quasiparticles with enhanced effective mass (10-1000 m_e)
- Nodal gapped superconductor
- Fermi velocity is reduced by large effective quasiparticle mass
- Light Dark Matter can easily excite plasmon mode in heavy-f systems since $v_F < v_\chi$

Potential Materials: URh₂Si₂, CeCoIn₅

Determining Dark-Matter–Electron Scattering Rates from the Dielectric Function

Yonit Hochberg, Yonatan Kahn, Noah Kurinsky, Benjamin V. Lehmann, To Chin Yu, and Karl K. Berggren Phys. Rev. Lett. **127**, 151802 – Published 6 October 2021



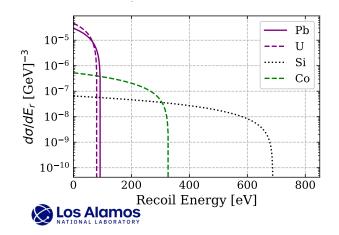

Sensor Development of Unconventional Superconductors

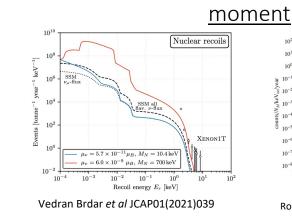
• Kinetic inductance scales with effective QP mass

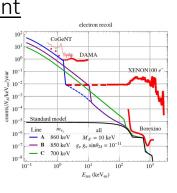
Large DM coupling Large Kinetic inductance Goal: make MKID out of unconventional SC

- Collaborators at Cornell have developed thin film growth of heavy-f superconductor ${\rm CeCoIn}_5$
- Create microstructures down to 100nm using reactive ion etch
- Basic QP transport studies happening at LANL
- Designing coplanar waveguide structures to measure kinetic inductance of films

Novel Quantum Materials as Probes of BSM Physics


- Light Dark Matter Detection Electronic Recoils
 - Novel narrow bandgap Semiconductors with the SPLENDOR experiment
 - Development of low noise charge sensitive devices
 - Leveraging unconventional superconductors as sensors
- <u>Nuclear Recoils on the meV scale</u>
 - CEVNS detection with novel materials
 - Qubit based athermal phonon sensors
- High Efficiency Gamma Ray detection with High-Z dense materials


Low Energy Neutrino Physics


- Neutrinos of energy $E_{
 m v} < 50$ MeV will scatter coherently with the entire nucleus CEm vNS
- Differential rate depends strongly on Z
 - Threshold scales inversely with nucleon mass
- Lower threshold detectors offer access to large rate enhancement.

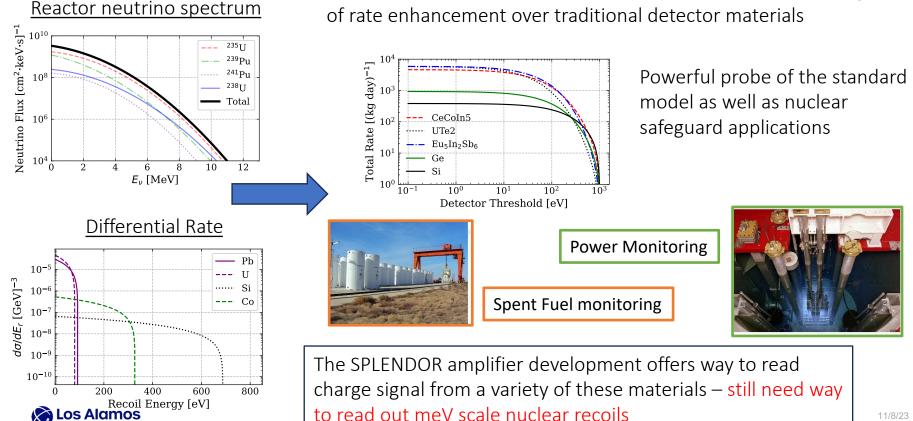
$$\frac{\mathrm{d}\sigma}{\mathrm{d}E_R} = \frac{G_F^2 M}{4\pi} \cdot (N - Z \cdot (1 - 4\sin^2\theta_W))^2 \cdot (1 - \frac{E_R}{E_R^{\mathrm{max}}}) \cdot F^2 (q^2)$$
$$E_R^{\mathrm{max}} = 2E_\nu^2 / (M + 2E_\nu)$$

BSM Neutrino Physics: Neutrino Magnetic

Α

Ζ

boson


scattered neutrino

nuclear

reco

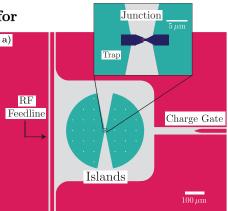
Roni Harnik et al JCAP07(2012)026

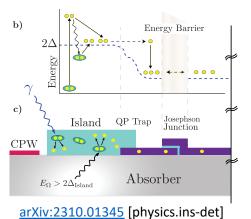
Nuclear Reactor Neutrinos with Novel Materials

Lanthanide, and actinide based materials offer an order of magnitude

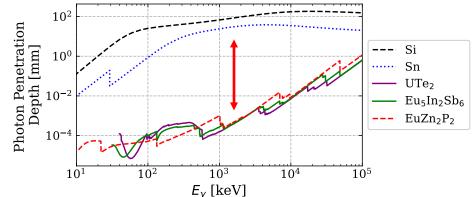
The Superconducting Quasiparticle-Amplifying Transmon

The Superconducting Quasiparticle-Amplifying Transmon: A Qubit-Based Sensor for meV Scale Phonons and Single THz Photons

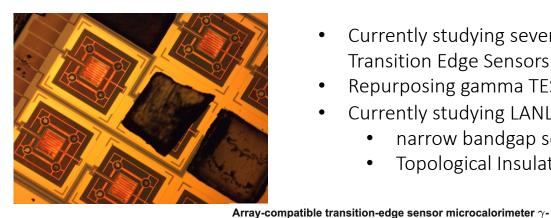

C.W. Fink,^{1,*} C. Salemi,^{2,3,†} B.A. Young,⁴ D.I. Schuster,⁵ and N.A. Kurinsky^{2,3,‡}


- A sensor based on the weakly charge-coupled transmon architecture
- Charge dispersion allows for sensitivity to parity flip from single quasiparticle tunneling event
- Leverages quasiparticle trapping and amplifying techniques pioneered by SuperCDMS
- Will be sensitive single meV phonons in substrate with measurement times of $1\mu s$

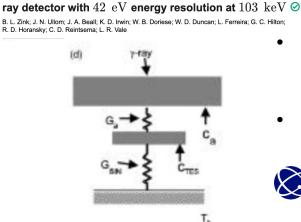
RDC8: session #3


Novel Quantum Materials as Probes of BSM Physics

- Light Dark Matter Detection Electronic Recoils
 - Novel narrow bandgap Semiconductors with the SPLENDOR experiment
 - Development of low noise charge sensitive devices
 - Leveraging unconventional superconductors as sensors
- Nuclear Recoils on the meV scale
 - CEVNS detection with novel materials
 - Qubit based athermal phonon sensors
- High Efficiency Gamma Ray detection with High-Z dense materials

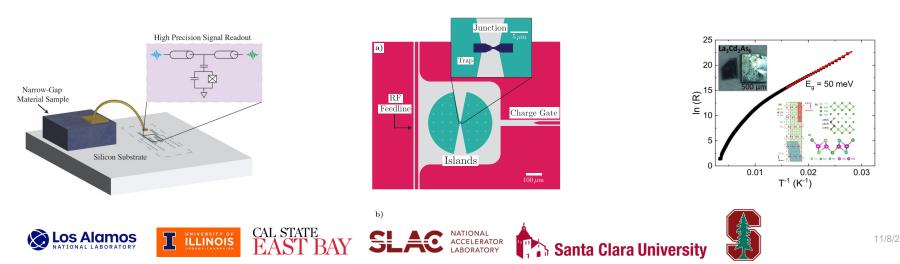

High Efficiency Gamma Detection

- Superconductor based X-ray spectrometers have been very successful
 - Efficiency drops for high energy gammas
- Large volume HPGe detectors have been used with good efficiency but poor energy resolution
- Lanthanide, and actinide based materials are typically high-Z and dense giving them many orders of magnitude more stopping power than traditional detector materials



Quantum Materials as Calorimeters using TESs

- Currently studying several novel materials as calorimeters with Transition Edge Sensors
- Repurposing gamma TESs made by NIST
- Currently studying LANL grown:
 - narrow bandgap semiconductors: $Eu_5In_2Sb_6$ and $EuZn_2P_2$
 - Topological Insulator SmB₆



- First probe of the non-equilibrium phonon dynamics of many of these materials
- Results expected in late 2023/early 2024

Conclusions

- Wide range of compelling physics at the meV scale both from HEP and NP.
- To reach these thresholds, advancements in both detector materials and sensor thresholds needs to be made.
- We have made progress on both these fronts through both the development of **novel quantum materials** and **qubit-based** sensors for both charge and phonons.
- There are many exciting directions to take this work in always open to new collaborators!

