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Introduction
What are Electron Trains?

What do we know about them?
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Electron Trains (AKA “e-trains”)
• “Electron trains” are a form of background noise in dual-phase TPCs

• Spurious single electrons (SEs) observed for at least a second a�er S2s

▪ 30% livetime loss vetoing electron/photon-trains in LZ Science Run 1 (SR1) (Linehan [ ])

•  dominated by electrons from photoionization of TPC liquid & grids

•  dominated by electrons captured & released by impurities in dri� path?

1

Δ < →tS2 tdrift

Δ > →tS2 tdrift

Single scatter S2 followed by SEs for at least 40ms (GIF)

Top PMT array, le�, showing position-correlated SEs (GIF)
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Electron Train Hypotheses
• Top: “Dri�” liquid events generate electron trains,

not photoionization in gas or below cathode

• E-train rates are [ ] [ ]:

▪ Bottom: correlated with electron lifetime

◦  increasing time since S2

▪ Anti-correlated with dri� time of progenitor
(shown later)

•  Liquid bulk origin, not liquid surface

▪ Unclear physics; electrons captured and
released by impurities in dri� path?

2 3

∙ → ⋆ ⟹

⟹

 

Electron trains in XENON1T [ ]2

E-train electron lifetime dependence in LUX [ ]3
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Electron Trains in LZ
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Position Dependence of SEs a�er “Progenitor” S2s
• Prog  < 55cm, area > 1e4 phd (~200 SE)

▪ Skip if < 200ms a�er any pulse > 5e3 phd

• [Hz/cm2] because larger  larger
area in XY  more child pulses

• Define position-correlated and uncorrelated
child pulses

▪ p-corr:  < 10cm

▪ p-uncorr: 20cm <  < 30cm

• Position-correlated region captures power
law (next slide), position-uncorrelated
avoids power law and walls

• Prog dri� time within fiducial volume

r

Δr ⟹
⟹

Δr

Δr

 

SE Rate vs. radial distance  between progenitor and childΔr
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SE Rates vs. Time Since S2
• Top: P-corr flux is more intense and

appears to follow a power law

• Bottom: Fit power law  to
p-corr rates

▪  consistent with LUX [ ],
XENON1T [ ]

• Dip in rates prior to 1ms is known
artifact of pulse pile-up from
photoionization

αt−β

β 3
2
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Dri� Time and Progenitor Area
• Top: SE Rate vs. progenitor area

▪ : Progenitor size in electrons extracted

• Bottom: SE Rate vs. progenitor dri� time

▪ Normalize by 

▪ , corrected for extraction efficiency

•  [s]: (0.003, 0.3) avoids photoionization in p-uncorr rates

• P-uncorr pulses show virtually no correlation for either
prog area or dri� time

▪ Favors explanation of uncorrelated pulses coming from
previous e-trains (XENON1T [ ])

SER

S = S exp( / )EI ES tdrift τe−

S → SES ER

Δt
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Electron Lifetime

• Rates in SR1 exhibit dependence on electron lifetime up to 8ms

emiz@umd.edu - CPAD 2023



11

Electron Loss Normalization
Advancing the Liquid Bulk Hypothesis
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Electron Lifetime and Dri� Time
• Electron lifetime

and dri� time
dependence hint at
liquid bulk origin

• Normalizing by
 does not

cancel out
dependence

SEI
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Electron Loss Normalization
• Normalizing by

unifies dri� time and
electron lifetime

• Clear indication that
power law originates
with liquid bulk
impurities

• Also shows (again) lack
of correlation for
uncorrelated
backgrounds

= S − Seloss EI ES
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“Dri�” Field Dependence
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Two TPCs for the Price of One
• Distinguish between extraction liquid (EXL) and dri�

liquid (DRL) single scatters with dri� time

• Use top-bottom asymmetry to exclude gas events

• EXL: a second TPC where the gate is a “cathode”
i.e. 

• Vary extraction field, compare EXL and DRL e-trains

• Isolate “dri�” field dependence with otherwise
identical detector conditions!

▪ Right: Dri� time does not affect exponent

▪ Correct for extraction efficiency and increased
charge yield in EXL with  normalization

=Edrift Eextract

SES

Fits to power law at different dri� time bands show exponent
does not depend on dri� time
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 7, 8kV - EXL Events

• E-trains from extraction liquid have much weaker delayed correlated pulses

• Try subtracting flux from uncorrelated pulses for slightly cleaner power law

• Liquid field  3400, 3900 V/cm for 7, 8kV respectively; radial field variation ~few %

ΔVExtract

≈
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 7, 8kV - Uncorrelated Subtraction

• Exponent is steeper than typical ~1.0-1.1 from dri� liquid events (~0.5-1 sigma difference)

• Gate grid at 2.5us dri� time; no change in exponents with dri� time cut at 2us

ΔVExtract
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 7, 8kV - DRL Events

• Rate curves shown here from same datasets, different dri� time cut

• Appears compatible with “weak” extraction field dependence reported by XENON1T [ ]

•  Field in dri� path could influence a time constant in power law exponent

ΔVExtract

2
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Conclusions
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Summary of General Characterization
• Power law observed for rate of single electron pulses following S2s in dri� region

• P-uncorr pulses also uncorrelated w/other progenitor characteristics e.g. area and dri� time

• Bottom:  normalization appears to unify electron lifetime and dri� time dependence

▪ Strong evidence for liquid bulk impurities as dominant factor in power law

eloss
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Summary of Possible “Dri�” Field Dependence
• Simultaneous analysis of e-trains in

extraction liquid (EXL) and dri� liquid (DRL)

• Steeper exponent at field > 3 kV/cm?

▪ Apparent agreement with result from
Akimov et al. [ ]

• Exponent in DRL at field  180 V/cm
matches literature

• Studies of this effect are worth pursuing to
gain a better understanding of e-train
physics and modeling!

4

≈

Note: value for study conducted by Kopec et al. [ ] was reported
for 500 V/cm and “unchanged” for other fields
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Backup
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Normalization Reference
Factor Description

“Raw” (extracted) S2 area in units of single electrons

“Surface” S2 area, i.e.   corrected for extraction
efficiency

“Initial” S2 area, i.e.   corrected for dri� losses

Number of electrons lost while dri�ing

Area of liquid surface subtended by radial selection of
pulses

S = S /ER 2phd nphd/SE

S = S /ES ER eeee SER

S = S exp( / )EI ES tdrift τe− SES

= S − Seloss EI ES

cm2
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Electron Trains in TPC Regions
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 Sweep - DRL EventsEdrift
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 Sweep - “Background” Subtraction in DRL EventsEdrift
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BigDEB Main Algorithm

• Livetime between windows is not counted unless trigger efficiency of pulse is ~100%
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