Calibration Systems of the Multi-Tonne Scale Xenon Detector in LZ

Outline

- Direct Detection of Dark Matter with the LZ Experiment
- Calibration Systems of LZ
 - Internal Source Injection System
 - External Calibration Source Deployment
 - DD Neutron Generator
 - Photoneutron Delivery System
- Summary and Outlook

The LZ Detector

Dual Phase Xenon TPC

- Signal vs. background discrimination
 - Charge (S2)/ light (S1) ratio is different between electron recoils (ER) and nuclear recoils (NR)

- Electrons and gammas interact with atomic electrons, produce ER
- WIMPs (and neutrons) interact with Xe nuclei, produce NR

Calibration Sources in LZ

Calibration Source	Purpose	
CH_3T (continuum betas up to 18.6 keV)	Electron Recoil (ER) band calibration, S1 signal efficiency validation	
²²⁰ Rn (betas from Pb212 up to 102 keV)	High energy ER calibration for EFT studies	
^{83m} Kr (32.1 and 9.4 keV ER)	Energy scale and x-y spatial correction maps	\rightarrow
^{131m} Xe (164 keV ER)	Energy scale and electron lifetime monitoring	
Various gamma sources: ²²⁸ Th (2615 keV), ²² Na (1275 keV), ⁵⁴ Mn (835 keV), ⁵⁷ Co (122 keV)	Energy scale and resolution; Inter-detector timing	\backslash
Deuterium-Deuterium (DD) neutrons (Direct mode: 2.45 MeV, D-reflector: 270-420 keV, H- reflector: 10-200 keV)	TPC Nuclear Recoil (NR) band calibration, trigger efficiency, S1 cut acceptance	
²⁴¹ AmLi (neutrons up to ~1.5 MeV)	OD calibration, neutron-tagging efficiency, S2 signal efficiency validation	
²⁴¹ AmBe (neutrons up to ~11 MeV)	High E NR, OD calibration, neutron-tagging efficiency	
⁸⁸ YBe (152 keV neutron)	Low energy NR/ ⁸ B solar neutrino studies	

5

Overview of LZ calibration systems

"The Design, Implementation, and Performance of the LZ Calibration Systems", in prep. 6

Internal Source Injection (SI) System

- Two categories of sources on the SI panel
 - Bottle sources
 - Generate sources (gaseous daughters from solid isotopes)

 228 Th $\rightarrow ^{220}$ Rn 83 Rb $\rightarrow ^{83m}$ Kr 131 I $\rightarrow ^{131m}$ Xe

Internal Source Injection (SI) System

- Precise dose control across a wide range of activities
 - ²²⁰Rn: Control carrier gas flow rate
 - ^{83m}Kr: Control
 carrier gas amount
 - ^{131m}Xe: Control activity build-up time
 - CH₃T: Control pressure in the dose volume

Mass Flow Control (MFC)

Internal Source Injection (SI) System

- In LZ there was no unexpected amount of residual tritium observed in other experiments previously
 - The use of a CH₄
 purifier is
 essential

External Calibration Source Deployment (CSD)

- The CSD system is used for deploying external rod sources:
 - Gamma sources (²²⁸Th,²²Na, ⁵⁴Mn, ⁵⁷Co)
 - AmLi/AmBe
- Three calibration tubes between the inner and outer cryostat
- mm-precision in deployment z-position enabled by a laser feedback system

Position reconstruction of ²²⁸Th events in the TPC, Skin and OD:

Stepper motor and deployment wheels/filament inside the chamber

Connected to the calibration tube

CSD chamber

Deuterium-Deuterium (DD) Neutron Generator

• Neutrons produced through deuterium-deuterium fusion:

 $^{2}D + ^{2}D \rightarrow ^{3}He + n$

- The generator can operate in different modes:
 - Direct mode: 2.45 MeV monoenergetic neutrons

Figure credit: Jeanne Bang

Deuterium-Deuterium (DD) Neutron Generator

• Neutrons produced through deuterium-deuterium fusion:

 $^{2}D + ^{2}D \rightarrow ^{3}He + n$

- The generator can operate in different modes:
 - Direct mode: 2.45 MeV monoenergetic neutrons
 - D-reflector: Neutrons reflected off a deuteriumloaded target; Dominantly 350±40 keV monoenergetic neutrons
 - H-reflector: Neutrons reflected off a hydrogenloaded target; 10-200 keV neutrons
 - First use of neutron reflector modes in a large scale detector calibration

Figure credit: Jeanne Bang

Photo-neutron Source Delivery System

- ⁸⁸YBe source
 - ⁸⁸Y Gamma energy: 1.836 MeV 0 (99.2%)
 - ~152 keV monoenergetic neutrons through (γ, n) reaction:

 $\gamma + {}^9\text{Be} \rightarrow n + {}^8\text{Be}$

- Lowered to the OCV top though a customcutout
- First use in a noble liquid dark matter experiment to calibrate ⁸B solar neutrinos **CEvNS** energies

containing GdLS

through a cut-

out in the OD

Calibration data from LZ Science Run I

- Dark blue points: Tritium data Orange points: DD data
- NR/ER band is fitted using the Noble Element Simulation Technique* (NEST) model

* https://nest.physics.ucdavis.edu/

Phys. Rev. Lett. 131, 041002

Summary and Outlook

- LZ's intricate calibration systems played a crucial role in understanding the detector response, enabling its world-leading dark matter search results
- Other sources in progress for LZ
 - **AmBe with Tagging System:** Implementing an advanced AmBe calibration system with a tagging feature to enhance precise neutron selections
 - SbBe for Low-Energy Calibration: Incorporating SbBe sources for low-energy calibration, measuring detector response for the faintest dark matter signals
- Area of improvements for future calibration systems
 - **CSD Deployment Tube Length:** Optimizing the length of the CSD deployment tube to achieve even better spatial coverage
 - **DD Conduits:** Optimizing DD conduit placement to maximize neutron interactions in the fiducial volume and providing robust structural support to manage buoyancy in the water tank
 - Water Tank Interlock System: Developing an interlock system for the water tank to minimize mine air ingress after YBe calibration, ensuring a stable environment for subsequent measurements

LZ (LUX-ZEPLIN) Collaboration, 37 Institutions

- **Black Hills State University** .
- **Brookhaven National Laboratory**
- **Brown University**
- **Center for Underground Physics** .
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- King's College London .
- Lawrence Berkeley National Lab. .
- Lawrence Livermore National Lab.
- LIP Coimbra .
- Northwestern University .
- Pennsylvania State University
- **Royal Holloway University of London** .
- **SLAC National Accelerator Lab.**
- South Dakota School of Mines & Tech .
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab. .
- **Texas A&M University** ٠
- University of Albany, SUNY .
- **University of Alabama**
- University of Bristol .
- University College London
- University of California Berkeley .
- **University of California Davis** .
- **University of California Los Angeles** .
- **University of California Santa Barbara** .
- University of Liverpool .
- University of Maryland .
- University of Massachusetts, Amherst .
- **University of Michigan**
- University of Oxford .
- **University of Rochester**
- **University of Sheffield**
- University of Sydney
- **University of Texas at Austin** .
- University of Wisconsin, Madison

250 scientists, engineers, and technical staff

Science and FCT Technology **Facilities** Council

Thanks to our sponsors and participating institutions!

Detector PMT and Optical Calibrations

Xe LED Calibration System

• 78 individually operable LEDs installed throughout the TPC and Skin

Detector PMT and Optical Calibrations

OD Optical Calibration System (OCS)

• LED light injected through optical fibres at 35 locations in the OD

D-reflector performance

