Low-energy Event Detection in a Liquid Xenon Proportional Scintillation Counter

Jianyang Qi¹, Abigail Kopec¹, Yue Ma¹, Haiwen Xu¹, Kaixuan Ni¹

¹University of California, San Diego

This work is supported by the DOE OHEP funded HEPCAT program

An R&D Program towards a Low Background Electron Counting Apparatus

- R&D program supported by DOE (2018-2020)
 - Investigate single-and-few e- background in liquid xenon detectors
 - Dedicated setups to test various ideas to mitigate the electron background
 - Accurate calculations and modeling of expected low energy signals
- Following the R&D program, propose/build a liquid xenon detector with much reduced single e- background for Light DM Search

Motivation

Integrated reactor CEvNS rate on different noble elements (K. Ni et. Al. universe7030054)

- Coherent Elastic Neutrino Nucleus Scattering (CEvNS) at a nuclear reactor
 - ➤ High flux
 - Sub-keV nuclear recoils in Xe (mostly S2-only events)
- Next generation of LXe dark matter searches for:
 - WIMPs (if ER/NR discrimination is comparable)
 - Light dark matter (if S2 only background can be reduced)

Single-electron Background in Dual Phase LXe TPCs

- Single-electrons up to 1 second after a large S2 pulse
- Seen in dual-phase LXe TPCs (LUX, XENON1T)
- Major background for lowenergy ionization-only searches
- ➢Origins are unclear:
 - Could be related to the liquid-gas interface
 - Could be related to impurities
 - ≻Or a mix of both

Liquid Xenon Proportional Scintillation Counter (LXePSC)

Principle of a single phase liquid Xenon (LXe) detector (Qing Lin *JINST* **16** P08011)

- Produces S2 directly in liquid:
 - ➤ 100% extraction efficiency
 - Simplifies detector design (no need to maintain a gas-gap)
 - Potential to investigate the origin of the single-electron background after a large S2
- Needs > 425 kV/cm to produce S2s in LXe (E. Aprile et. al.: JINST 9 P11012 (2014))

LXePSC at UCSD: SanDiX

Modified from a design by Dr. Yuehuan Wei

- Previous results:
 - 25 μm anode wire, arXiv:2111.09112 (LIDINE 2021, JINST 2021)
 - ➢ 10 µm anode wire, arXiv:2301.12296 (JINST 2023)
- ➢ Recently changed wire to 18 µm
 ➢ Smaller maximum field
 ➢ Larger electroluminescence region

Previous Results: 10 µm Anode

> Evidence of S2 pulse induced single electron emission from cathode wires

- ➢ Measured g2 of 1.8±0.3 PE/e-
- More details at arXiv:2301.12296

Previous Results: 10 µm Anode

- EL gain consistent with Aprile et al. (JINST 9 P11012 (2014)) after correcting for the wire shadow effect
- Low Energy ER from tritium decays observed
- More details at arXiv:2301.12296

Current Results: 18 µm Anode Test

- > Larger anode diameter (18 μ m) \Rightarrow larger electroluminescence region
 - Higher electric field in the bulk
 - Anode: 4.5 kV, Cathode: -650 V
- \geq ²⁵²Cf calibration:
 - ^{129m}Xe and ^{131m}Xe activated lines (236 keV and 164 keV gammas, respectively)
 - Nuclear recoil band
- > Xe activated lines:
 - High statistics (made possible with new triggerless digitizers!)
 - Cuts in drift time (i.e. electric field) for Doke-plot
- ➤ Tritium:
 - Gives us a measurement of ER-leakage for small g₂

Electric Field

Field simulation is consistent with analytic field (near the center in z and r)

- Charge insensitive volumes (CIV) near the top and bottom
 Next iteration will have field shaping rings
 - Current experiment has ~17% CIV

Activated Xenon Lines

- Clear ^{131m}Xe and ^{129m}Xe lines (164 and 236 keV respectively)
- \succ Larger drift times \rightarrow larger event radius \rightarrow smaller electric field
- Drift time slices correspond to electric field slices
- Single-electron gain is the same regardless of drift time slice
- $\geq g_2$ measured to be ~3.5 PE/e⁻ (before electron lifetime effects)
- $\geq g_1 \approx 0.14$ PE/photon (photosensor coverage: 29%)

Nuclear Recoils

Cuts applied:

z-cut

0.20

0.15

0.10

0.05

0.00

-0.05

10000

Voltage [V]

Diffusion cut (drift time vs S2 width)

S1

20000

25000

Time [ns]

30000

Multiple scatter

Light emissions: main limitation

15000

Noise cuts

35000

ER (Tritium)/NR Discrimination

- 1σ regions seem well separated
- However: a "shower" of leakage events for both ER and NR
 - Could be due to imperfect charge collection (charge insensitive volume)
- Two methods to calculate leakage:
 - Counting
 - Gaussian fitting

ER (Tritium)/NR Discrimination: Leakage by counting

 10^{-1}

Leakage 10⁻²

 10^{-3}

5

10

20

15

S1 [PE]

- Find NR median, count tritium events below NR median
- ➢ NR Acceptance ~47.5% (after data-quality cuts + NR) events below median)
- Some bins have leakage < 0.01, but most have</p> leakage > 0.01
- Investigation of leakage events is still ongoing

Drift time $\in [5, 5.5] \,\mu s$, $|\vec{E}| \in [548, 593] \,V/cm$

15

S1 [PE]

20

25

30

 10^{-2}

Leakage -01

 10^{-3}

5

10

ER (Tritium)/NR Discrimination: Leakage by fitting

- > Motivation: To estimate the ideal-case leakage
 - Ideal case: no CIV, no reconstruction effects, only tritium events
- Fit tritium events' Log10(S2/S1) in each S1 slice with gaussian
- Find fitted proportion below the NR median

0.007

 Total (Gaussian)
 Leakage

 0000
 20000

 0000
 20000

Future Steps

- NUXE-3: A 3 kg prototype
- Gate to separate drift region from electroluminescence region
- Dense SiPM array on the outside for more coverage
- Field shaping rings for a more uniform field and lower charge insensitive volume

Further into the future: NUXE-100 as LBECA

If LXePSC is successful in reducing single electron background: Scale up!

- NUXE is a planned reactor neutrino CEvNS experiment using ~100 kg LXe (or Xe-doped LAr) single-phase PSC
- The same detector system can be moved underground for light dark matter search after demonstrating the detection of reactor neutrinos.

Further into the future: Extraction-less TPC

Figure from A. Breskin 2022 JINST 17 P08002

Regardless, results of this talk suggest ER/NR discrimination can still be maintained in the single-phase

- Strip-coated electrodes on a quartz window
- > No need to maintain liquid level and worry about extraction efficiency

- > Obtained a g_2 of 3.5 PE/e⁻ while maintaining sensitivity to low-energy (O(1keV)) events
- > Obtained an energy calibration (doke plot) by slicing the data in radial slices
- First observation of nuclear-recoil events in a single-phase liquid Xenon detector using both light and proportional scintillation signals
- First estimation of ER-leakage for such a detector
- > Main limitation: Higher rates of spurious light emission, low g_2 (might not be an issue for higher-energy NR)