Low-energy Event Detection in a Liquid Xenon Proportional Scintillation Counter

Jianyang Qi1, Abigail Kopec1, Yue Ma1, Haiwen Xu1, Kaixuan Ni1

1University of California, San Diego

This work is supported by the DOE OHEP funded HEPCAT program
An R&D Program towards a Low Background Electron Counting Apparatus

➢ R&D program supported by DOE (2018-2020)
 ➢ Investigate single-and-few e- background in liquid xenon detectors
 ➢ Dedicated setups to test various ideas to mitigate the electron background
 ➢ Accurate calculations and modeling of expected low energy signals
➢ Following the R&D program, propose/build a liquid xenon detector with much reduced single e- background for Light DM Search
Motivation

- Coherent Elastic Neutrino Nucleus Scattering (CEνNS) at a nuclear reactor
 - High flux
 - Sub-keV nuclear recoils in Xe (mostly S2-only events)

- Next generation of LXe dark matter searches for:
 - WIMPs (if ER/NR discrimination is comparable)
 - Light dark matter (if S2 only background can be reduced)

Integrated reactor CEνNS rate on different noble elements (K. Ni et. Al. universe7030054)
➢ Single-electrons up to 1 second after a large S2 pulse
➢ Seen in dual-phase LXe TPCs (LUX, XENON1T)
➢ Major background for low-energy ionization-only searches
➢ Origins are unclear:
 ➢ Could be related to the liquid-gas interface
 ➢ Could be related to impurities
 ➢ Or a mix of both

XENON1T, arXiv:2112.12116 (PRD 2022)
Principle of a single phase liquid Xenon (LXe) detector (Qing Lin *JINST* 16 P08011)

- Produces S2 directly in liquid:
 - 100% extraction efficiency
 - Simplifies detector design (no need to maintain a gas-gap)
 - Potential to investigate the origin of the single-electron background after a large S2

- Needs > 425 kV/cm to produce S2s in LXe (E. Aprile et. al.: *JINST* 9 P11012 (2014))
Previous results:
- 10 µm anode wire, arXiv:2301.12296 (JINST 2023)

Recently changed wire to 18 µm
- Smaller maximum field
- Larger electroluminescence region

Modified from a design by Dr. Yuehuan Wei
Evidence of S2 pulse induced single electron emission from cathode wires
Measured g_2 of 1.8 ± 0.3 PE/e-
More details at arXiv:2301.12296
EL gain consistent with Aprile et al. (JINST 9 P11012 (2014)) after correcting for the wire shadow effect

Low Energy ER from tritium decays observed

More details at arXiv:2301.12296
Larger anode diameter (18 μm) ⇒ larger electroluminescence region
 • Higher electric field in the bulk
 • Anode: 4.5 kV, Cathode: -650 V

252Cf calibration:
 • 129mXe and 131mXe activated lines (236 keV and 164 keV gammas, respectively)
 • Nuclear recoil band

Xe activated lines:
 • High statistics (made possible with new triggerless digitizers!)
 • Cuts in drift time (i.e. electric field) for Doke-plot

Tritium:
 • Gives us a measurement of ER-leakage for small g2
Electric Field

Field simulation is consistent with analytic field (near the center in z and r)

➢ Charge insensitive volumes (CIV) near the top and bottom
 ➢ Next iteration will have field shaping rings
 ➢ Current experiment has ~17% CIV

➢ CIV may cause charge loss (i.e. smaller S2s)
Activated Xenon Lines

- Clear ^{131m}Xe and ^{129m}Xe lines (164 and 236 keV respectively)
- Larger drift times \rightarrow larger event radius \rightarrow smaller electric field
- Drift time slices correspond to electric field slices
- Single-electron gain is the same regardless of drift time slice
- g_2 measured to be \sim3.5 PE/e$^-$ (before electron lifetime effects)
- $g_1 \approx$ 0.14 PE/photon (photosensor coverage: 29%)
Cuts applied:
- z-cut
- Diffusion cut (drift time vs S2 width)
- Multiple scatter
- Noise cuts

Light emissions: main limitation

NR Band from 252Cf
ER (Tritium)/NR Discrimination

- 1σ regions seem well separated
- However: a “shower” of leakage events for both ER and NR
 - Could be due to imperfect charge collection (charge insensitive volume)
- Two methods to calculate leakage:
 - Counting
 - Gaussian fitting
ER (Tritium)/NR Discrimination: Leakage by counting

- Find NR median, count tritium events below NR median
- NR Acceptance ~47.5% (after data-quality cuts + NR events below median)
- Some bins have leakage < 0.01, but most have leakage > 0.01
- Investigation of leakage events is still ongoing
ER (Tritium)/NR Discrimination: Leakage by fitting

- Motivation: To estimate the ideal-case leakage
 - Ideal case: no CIV, no reconstruction effects, only tritium events
- Fit tritium events’ Log10(S2/S1) in each S1 slice with gaussian
- Find fitted proportion below the NR median

Most bins have leakage < 0.01
Future Steps

➢ NUXE-3: A 3 kg prototype
➢ Gate to separate drift region from electroluminescence region
➢ Dense SiPM array on the outside for more coverage
➢ Field shaping rings for a more uniform field and lower charge insensitive volume
Further into the future: NUXE-100 as LBECA

If LXePSC is successful in reducing single electron background: Scale up!

- **NUXE** is a planned reactor neutrino CEvNS experiment using ~100 kg LXe (or Xe-doped LAr) single-phase PSC
- The same detector system can be moved underground for light dark matter search after demonstrating the detection of reactor neutrinos.
Regardless, results of this talk suggest ER/NR discrimination can still be maintained in the single-phase
- Strip-coated electrodes on a quartz window
- No need to maintain liquid level and worry about extraction efficiency
Summary

- Obtained a g_2 of 3.5 PE/e$^-$ while maintaining sensitivity to low-energy (O(1keV)) events
- Obtained an energy calibration (doke plot) by slicing the data in radial slices
- First observation of nuclear-recoil events in a single-phase liquid Xenon detector using both light and proportional scintillation signals
- First estimation of ER-leakage for such a detector
- **Main limitation:** Higher rates of spurious light emission, low g_2 (might not be an issue for higher-energy NR)