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Review of Xenon and Argon Time Projection Chambers (TPCs)

A noble element dual phase TPC contains a noble element
in the liquid and gas phase. An electric field is established
to drift electrons. Photosensors detect scintillation light.

An energetic particle will generate:
- Scintillation light (S1)
- lonization (S2)

The time between the S1 and S2 reveals the Z position of article
interaction.

The S2 pulse hit pattern on array of top photosensors
reveals (X,Y) position.

S1/S2 ratio and pulse shape discrimination can be used for
particle ID.

S2(charge)

Drift time
indicates depth

| S1(light)

——p jonization electrons
NN UV scintillation photons (~175 nm)
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Comparison of Xenon and Argon for Detection Experiments

“property | Amon | Xemon

Argon and xenon are the two Scintillation 128 nm 178 nm

prominent noble element detection wavelength

media Kinetic Match to A =39.95 A =131.29
' Light Particles

Liquid phase 14.3 eV 9.28 eV

Both noble elements have their L
lonization energy

advantages and disadvantages, and

: Excitation Ener 11.8 eV 3.4 eV
have produced world-leading results &Y
in the. field of F:Iark matter and E——— L5 e 5 e
neutrino physics. lifetime
Price Cheap Expensive
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Chemistry of Xenon-Doped Argon

) _ *
Fast e- + Ar 9j|0W e-+Ar Example: Electrons inelastically

colliding with xenon or argon

— Threshold 11.8 eV
Fast e- + Xe = slow e- + Xe*

\ Threshold 8.4 eV

Ar* +Ar = Ar Argon and xenon form

Ar* + Xe - ArXe metastable excimers
Xe* + Xe—> Xe,

Ar, > 2 Ar+hv (128 nm, 1.6 us) Excimers decompose and
ArXe = Xe + Ar + hv (147 nm, ~300 ns(?)) release scintillation light

Xe, > 2 Xe + hv (178 nm, 22 ns)
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Xenon-Doping in Gaseous Argon
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£ > «j We expect most of the S2 light will
2> 0r + Xe 0-05Storr .
ol o — be wavelength-shifted to 147 nm by
E'l seorrien o ~50 ppm of Xe addition to Ar gas.
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Wavelength (nm)
Emission spectra of xenon-doped argon gas

mixtures at 1 atm in a gas proportional counter*

* T. Takahashi et al.
NIM 205 591-596 (1983)
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Xenon-Doping of Liquid Argon
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Neumeier et al.,, EPL 109 12001 (2015) D. Whittington, JINST 11 C05019 (2016)
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Applications of Xenon-Doped Argon

WIMP dark matter detection
— Darkside-20K / GADMC

— Especially important for extending the reach of ionization-only analysis
Energy spectra are

weighted toward lower
energies.

Neutrino physics via the CEVNS channel”
— Sterile neutrino searches
— Neutrino magnetic moment searches
— Non-standard interactions and new light mediators
— Flavor-blind observation of supernovae,
including potential insight into the neutrino mass hierarchy™

Small ionization signal
improvements result in
large sensitivity gains.

Low energy nuclear recoils

Anti-proliferation technology
— Reactor fuel cycle monitoring with CEVNS

* %k %k

%k % %k

= Large-Scale argon TPC improvements > O L
— Shift liquid scintillation light to more easily sensed wavelength %D g Slr.np-llfy-
— Narrower timing of liquid scintillation light 5 S & SCIn.tIIIat.|0n
— Reduced Raleigh scattering of scintillation light < S %_ optical signal
— Increased charge yield? T2O channel

* 0.G. Miranda et al., arXiv:2003.12050 ; L.J. Flores et al. arXiv:2002.12342 ; C. Blanco et al. arXiv:1901.08094
** P. Agnes et al., arXiv:2011.07819 ; *** C. Hagmann and A. Bernstein, arXiv:nucl-ex/0411004 ; **** D. Whittington, JINST 11 C05019 (2016)
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https://arxiv.org/search/physics?searchtype=author&query=Majumdar%2C+K

Thermodynamics of Xenon-Doped Argon

Xenon-argon miscibility is highly
dependent on temperature

Xenon-doping past the solubility
limit results in unwanted xenon
solid formation
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Thermodynamics of Xenon-Doped Argon

Recall: S2 light becomes
“xenon-like” at O(10 ppm)
level

For an operating
temperature of 92 Kand a
desired xenon concentration
in gas of 50 ppm, one needs
~4% xenon in the liquid.

Solubility limit at 92K: ~ 6%

Doable in theory!

Henry's constant
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Complications from Xenon-Doping

The large temperature discrepancy between xenon and argon

boiling points are a major source of system instability Xe Condenses (L8 bar]: 176 K

Xe Freezes (1.8 bar): 162 K

Evaporation

—» Evaporation

Ar Condenses (1.8 bar): 93 K
—

—

Left: Condensation of Xe-rich Ar gas causes Xe to freeze if Xe pressure exceeds saturation vapor pressure 0K
Middle: Evaporation of liquid mixture causes Xe concentration to increase in the liquid
Right: Unintended evaporation of liquid isolated by surface tension can cause Xe ice to form
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Xenon-Doped Argon S2 Experiment

Argon Gas + Xenon doping ~ 50 ppm

SiPM signals

SiPM Array

Time  EEEEEEEEEEEEEEEN WEEEEEEEEEEEEEEEEEEEEEEEEER

Anticipated data

: /f_*
g
5 /
a
(@)
Z 1
~
e /
g Solubility limit
a
(@Y}
(Va]
0 Xe fraction in gas

Detector Vessel

Lawrence Livermore National Laboratory N A‘S&‘g 11

LLNL-PRES-xxxxxx




CHILLAX: CoHerent lonization Limit of Liquid Argon and Xenon

Concept: A liter-scale dual phase xenon-
doped argon TPC

Goals

Investigate stability concerns from
xenon-doped argon, develop system
architecture that can address these
challenges.

Quantify benefits to an argon TPC’s
ionization signal from xenon doping

Lawrence Livermore National Laboratory
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Circulation Design

To pump
Gas << 35 and getter
ppm Xe ] 1 Secondary Cooling

Evaporation &
Gas ~35 Condensation
ppm Xe

Liquid 23,500 - - I l \
ppm Xe

Primary cooling

Gas 35 ppm Xe from pump and getter

Ar Condenser Detector Vessel
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Circulation Design

Camera

/

Level
meter

d

Conc
meter

Bubble
router

Thermometers Heaters
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Capacitive Techniqgue to Measure Xenon Concentration in Argon

The dielectric constant of xenon-doped
argon can be determined by the Clausius-
Mossotti equation:

2

& —1 _Eniai

e +2 £ 3e,
i=1

n;: number density of molecule (or atom)
type i
a;: atomic polarizability of molecule type i

One can derive a nearly linear dependence of &, on Fy,:

Dielectric Constant

|I.|llll 0.01 0.02 0.03 0.04 0.05
Xenon Concentration (%)
Then the capacitance of a capacitor with a xenon-

doped argon dielectric medium is linearly
dependent on the xenon concentration
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Capacitance and Xenon Concentration in Response to Doping

The CHILLAX capacitor tracks xenon
concentration throughout the doping
process with 0.05% precision

—1160

—0.15 B —1140

120

The capacitor is sensitive to variations
in doping conditions (fast vs slow
introduction of xenon)
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Drifts in capacitance
should be attributed 020 a0 e 80 100 120 0 '_16|0 180
" to changes in xenon Time (hours)

concentration or Capacitance and xenon concentration in CHILLAX over time, with
temperature doping stages highlighted in pink
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Stability Tests with Controlled vs Uncontrolled Detector
Temperature Gradient

Camera 1 i - Camera 1 u -—‘
——

l

Controlling thermal profile with 170K 93.5k
thermosiphon at top of > »

detector greatly enhances Ice - =

xenon stability in detector Y 93K . 93K
volume

Change in xenon concentration

results in change in signal .... .......
characteristics. Detrimental for Obr  4hr 36k 12hr  24hr  36hr 48hr  60hr  72hr

any detector’s performance! Maintaining a 0.5 K temperature gradient

A 95 K temperature gradient : _
prevents ice buildup for at least 3.5 days

results in rapid ice buildup
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Capacitive and Pixel Measurements of Xenon Stability Tests
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Development of a Dual Phase Xenon-Doped Argon TPC

CHILLAX is not actua”y a detector... The Top Silicon Photomultiplier (SiPM) Array will capture S2
t | light and allow for XY position reconstruction.
yet!

High-Voltage (HV) feedthroughs will deliver high voltage
for establishing an electric field to drift ionized electrons.

Phase 1: Successfully stabilize
2.35% xenon-doped liquid argon at
the liter scale inside a cryostat
[COfﬂplEtE] electric field uniformity.

Field-Shaping rings surround the target volume to maximize

Phase 2: Design and install a TPC The Bottom SiPM Array will capture additional S1 prompt
inside the cryostat to generate and | "&"™
measure ionization signals from

xenon-dgped argon [Ongo|ng] The Capacitive Meter quantifies xenon concentration by
measuring the dielectric constant (already implemented!)
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Near-term plans for CHILLAX

Fabrication, Assembly, and Testing of TPC
Parts

Installation and Testing of HV
Feedthroughs

We will then transition to quantifying the
improvements to a dual phase argon TPC
from xenon-doping.

. . 4
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Conclusion

Xenon-doping of argon has potential for achieving new sensitivities in noble element
detectors, but maintaining stability is nontrivial.

We can establish stable concentrations of xenon of up to 2.35% in liquid argon and can
monitor the concentration in the liquid with both a capacitive meter and a camera.

Xenon ice formation can be controlled with proper thermal design.
TPC design for CHILLAX is in mature stages, components are being fabricated and tested.

Measurements of improvements to S2 light and ionization yield forthcoming...

. . ( "‘l
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Thank you! Questions?
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This material is based upon work supported by the Department of Energy National Nuclear Security
Administration under Award Number DE-NA0O000979 and DE-NA0O003996.
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