

Quantum Optomechanical Sensors for Dark Matter and Sterile Neutrino Searches

Yu-Han Tseng, Yale University November 08, 2023

CPAD Workshop 2023

Levitated optomechanical sensors

- Dielectric particles (100 nm 30 μ m) optically trapped in UHV ($\leq 10^{-8}$ mbar)
 - extreme isolation, charge control, precise position measurement

• $\sim 10^{-12} \text{ m} \cdot \text{Hz}^{-1/2}$ position sensing, with $\sim 10^{-21} \text{ N} \cdot \text{Hz}^{-1/2}$ force sensitivity

• Ground state cooling + quantum control

Magrini et al., Nature 595, 373–377 (2021), See also Tebbenjohanns et al., Nature 595, 378–382 (2021)

Impulse sensing

• Scattered light carries position information; "weak continuous measurement"

"Standard Quantum Limit"

Smallest detectable momentum "kicks"

$$(\Delta p)_{SQL} = \sqrt{\hbar m \Omega_0} , \ \Delta p \approx F \cdot \delta(t).$$

~ 15 keV /c (150 nm sphere @150 kHz)

Clerk, PRB 70.24, 245306 (2004)

Recoil-based dark matter searches

- Generic "fifth force" DM-nucleon coupling
- Instantaneous impulses: $\Delta t \ll 1$ ns, versus sphere response time ~10 μ s
- Strategy: monitor sphere position and wait for rare, unexpected "kicks"

Proof-of-principle search with a 10 μ m silica microsphere:

Monteiro et al., PRL 125, 181102 (2020)

Sensitivity calibration

• Control on charge, spin, and COM temperature

0.1 mbar, 300 K

38

42

40

44

10⁻⁷ mbar, ~ 100 mk

Spectral density (m²/Hz)

 $\mathbf{\uparrow}\Omega_s$

10-1

 10^{-18}

 10^{-19}

10-20

36

 Direct calibration with known electric pulses

DM sensitivities

- Low detection thresholds (Δp ~ 15 keV/c) with small sizes (d ~ 100 nm) probe lighter dark matter and heavier mediators
- - Also probes sub-GeV single particle DM with a heavy/light mediator

See Afek et al., PRL 128, 101301 (2022)

Sterile neutrinos

• With isotope-doping (β or EC emitters) and secondary particle detectors, a recoil measurement allows reconstruction of ν momentum

D. Carney, K. Leach, and D. C. Moore, "Searches for massive neutrinos with mechanical quantum sensors," PRX Quantum 4, 010315 (2023) arXiv:2207.05883

• Search for kev-scale sterile v and "invisible" particles in nuclear decays

Sterile neutrinos

• Search for kev-MeV scale sterile v

Example β decay (³²P)

1 sphere-month constraints with β -isotopes

- Moderate exposure with existing technologies gives orders of magnitude improvement
- Proof-of-principle *α*-recoil detection underway!

Summary

We are developing new levitated optomechanical sensors, with applications at the precision frontier of particle and nuclear physics!

(Quantum Invisible Particle Sensor)

Cecily Lowe Dave Moore Andrew Nupp Tom Penny

Ben Siegel Yu-Han Tseng Jiaxiang Wang Molly Watts

Collaborators at LBNL:

Dan Carney Rebecca Carney Peter Denes Maurice Garcia-Sciveres Peter Sorensen Tsai-Chen Lee

Xinran Li Giacomo Marocco Emil Rofors

Existing constraints on steriles

 A wide variety of searches have been performed for sterile v:

Mass range (laboratory):

- ~eV: Short-baseline oscillations, reactors, ³H spectrum
- ~keV MeV: Beta decay spectra

>MeV: Heavy neutral leptons at accelerators

- If sterile v constitute significant fraction of DM, strong x-ray constraints exist
- ~keV sterile v with mixing ~10⁻¹⁰ are a viable DM candidate

Bolton et al., JHEP 2020, 170 (2020), arXiv:1912.03058

Proof-of-principle DM search

- 10 μ m microsphere, 7 days of exposure
- Control on charge, spin, dipole orientation (if needed), and COM

Frequency [Hz]

• Direct calibration of impulse sensitivity (~150 MeV /c)

Afek et al., PRA 104, 053512 (2021) Monteiro et al., PRA 101, 053835 (2020)

Constraining DM-neutron coupling

- Dominant background is spurious environmental noise
- Coherence over entire detector is maintained for light mediators

(Rate) $\propto N_t^2 \cdot \sigma_n$

• World's best limits on some composite DM models with a moderate exposure

Scaling up: microsphere array

- A large array of sensors probes smaller couplings and reject common background
- Time sharing 2D array achieved by an acoustic-optic deflector (AOD) independent control on each trapped microsphere

Scaling Loading Technique

For a single trap: Stochastic dropper loading

- Many spheres fall per trial
- Field standard for loading

For multiple traps: Controlled loading

- Lower chance knocking out neighboring spheres
- Unviably low success rate

Stochastic loading with controlled array filling

• Avoids unwanted interactions

Slide by Ben Siegel (Yale)

Coherent scattering with nanospheres

- Trapped ~15 nm spheres offer even lower detection thresholds
 - Detectable impulses are coherent over the entire sphere, even for short-range interactions

Heavy mediator

Afek et al., PRL. 128, 101301 (2022)