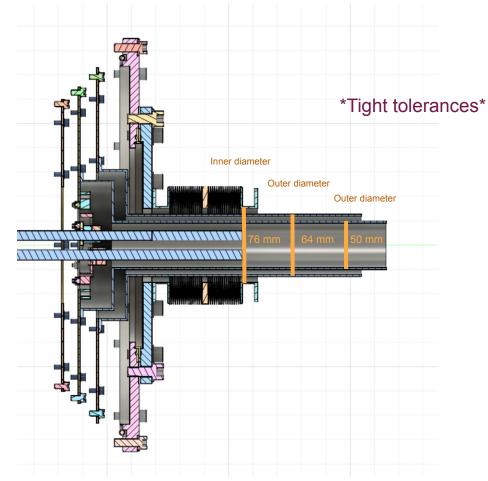

Cold Snout Design

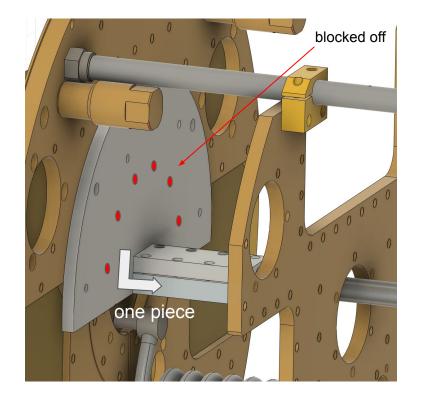
Maria Simanovskaia and Aya Keller

6/26/23

Goal: design a cold snout to cool the magnet and sheath to 1K and the receiver to 20mK using horizontal cold fingers from the DR still and MXC stages.

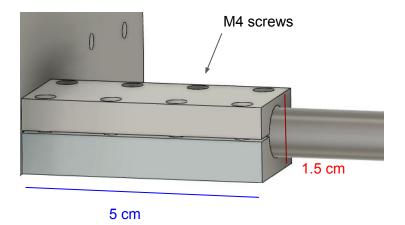

Shield dimensions

Thickness of 4K, 40K shield tubes: 2mm

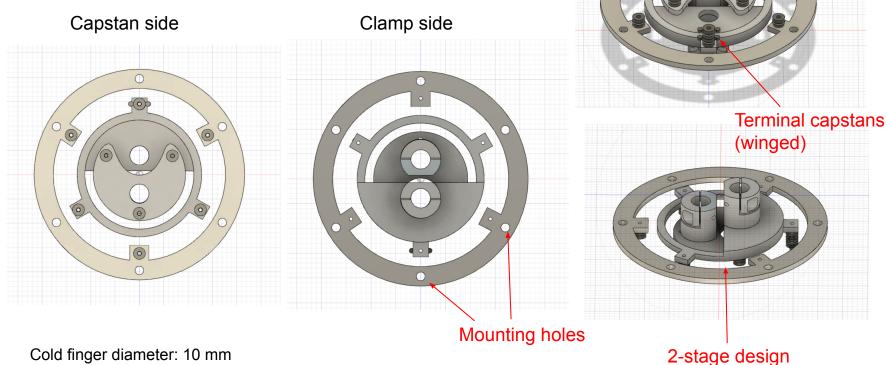

Distance between 4K and 40K tubes: 2.6 mm

Distance between bellows and 40K tube: 6mm

*Dimensions constrained by bellows and mating to octagonal belly of Woodstock


Cold Finger Attachment

*Material: ETP Copper

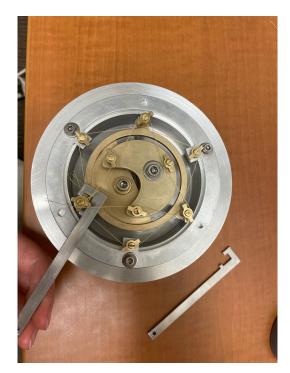

Concerns:

- Not enough screw holes in plate
- Machining difficulty

CAD design - Puck

Purpose: provide mechanical support for the 1 K and 20 mK cold fingers (CF) while keeping them thermally isolated

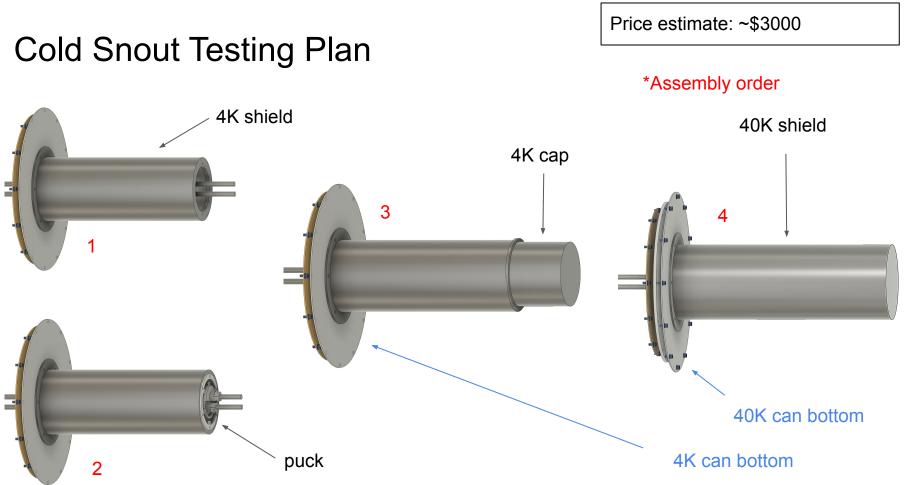
Cold finger diameter: 10 mm Distance (edge-edge) between cold fingers: 10 mm


Puck Test Assemblies

All Aluminum

Kevlar string

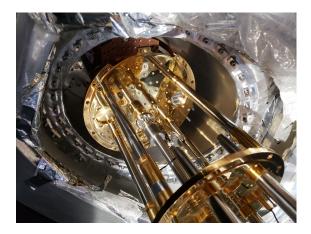
Brass / Aluminum Hybrid


Assembly Jig

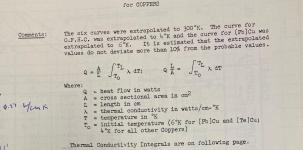
Puck assembly procedure:

https://confluence.slac.stanford.edu/di splay/DMRadio/Puck

These parts cannot be reused for the actual cold snout due to mating compatibility

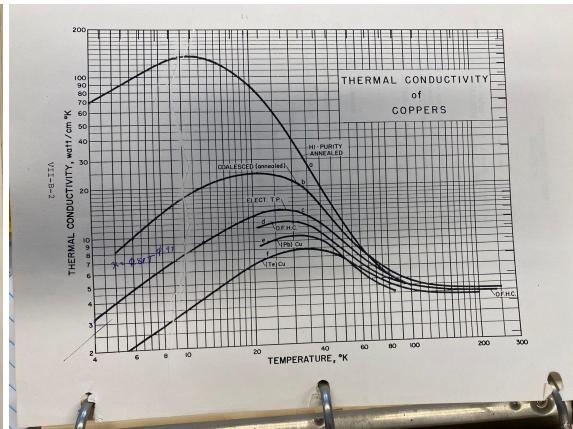

Cold Snout Testing plan

Flexible Connections to Woodstock


Inspiration for our design: High purity aluminum strips used by TSAT to make flexible thermal connection at 40 K Cu braid

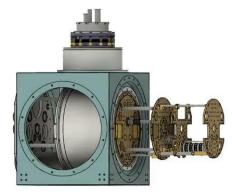
Cold snout milestones

- Identify copper type to use for cold finger, attachments
 - By July 5th
- Test cold fingers with heater, thermometer at the end
 - By September 1st
- Design mechanically flexible thermal interface with Woodstock
 - Flexible thermal shields at 40 K, 4K (cylinders mate with flat panels)
 - Copper braids at 1 K, 20 mK
 - By July 28th



Thermal conductivity of copper: ETP > OFHC at 4 K

Temp.	Thermal Conductivity watts/cm-°K					
°K						
	Hi-Purity Annealed	Coalesced	Elect. T.P.	0.F.H.C.	(Pb) Cu	(Te) Cu
4 6 8 10 15	70 96 120 134 120	6.2 10. 14. 17.5 23	3.2 4.8 6.3 7.8 11	2.4* 3.7* 4.7* 6.0* 8.5*	2.7* 3.6* 4.5* 6.3*	2.2 2.8 3.4 5.0
20	88	24	13	11 *	8 *	6.5
25	60	23	14	12	9.2	7.3
30	40	22	14	12	9.6	7.8
35	28	18.5	13	11	9.5	7.9
40	20	15	11.5	10	9	7.7
50	12	10	8.8	7.7	6.9	6.8
60	8.0	7.8	7.0	6.2	5.5	5.8
70	6.2	6.5	5.9	5.5	4.7	5.2
76	5.7	6.0	5.5	5.2	4.5	4.9
80	5.2	5.7	5.2	4.9	4.3	4.6
90	4.7	5.1	4.7	4.7	4.0*	4.3
100	4.5	4.8	4.5	4.5	3.8*	4.2
120	4.3	4.5	4.3	4.3	3.7*	4.0
140	4.2	4.3	4.2	4.2	3.6*	3.8
160	4.1	4.2	4.1	4.1	3.6*	3.8
180	4.0	4.2	4.0	4.0	3.6*	3.8
200	4.0	4.2	4.0	4.0	3.6*	3.8
250	4.0	4.2*	4.0	4.0	3.6*	3.8
300	4.0*	4.2*	4.0*	4.0*	3.6*	3.8


.971

- Exoraporation variation

VII-B-3

Final Assembly

