Upgraded SVT Survey

Stanford

University

Sarah and Cam Stanford/SLAC August 7, 2023

U.S. DEPARTMENT OF

17

2 Coordinate systems in the SVT

-SLAC

Geometry investigation

- Look at global positions and orientations of sensors to confirm that they make sense
- Compare different combinations of survey numbers using the two different geometry classes (2016 vs 2019)
 - Same survey numbers should yield same detector
 - Back sensors positions should be about the same for 2016 and 2019
- The following plots are generated using a tool that Tom developed for hps-align

<u>si ar</u>

Global position in SVT frame

Global positions of sensors for different SVT versions

Uchannel survey numbers only

Top back shifted, 700 μm Tu in L3 and L4

Comparing pre-alignment and design

Only apply survey constants

Summary geometry investigation

- Plotting tools very helpful for visualization of different geometries
 - Can be found in hps-align
- 700 µm shift in u for L3, L4
 - Shift is not present only when full set of survey data is used
 - Seems to be hard-coded value in 2019 detector classes
- Top back survey constants not applied correctly
 - There seems to be a difference between applying a survey to 2016 and 2019 detectors.
 - Points to bug in detector builder class in hps-java

- Relevant code in hps-java/detector-model/src/main/java/org/ lcsim/geometry/compact /converter
 - HPSTrackerGeometryDefinition classes generate SVT geometry representation from compact.xml
 - Mother and daughter SurveyVolumes with same logical structure as physical SVT
 - Structure allows AlignmentCorrections for (front and back) uchannel, modules, and individual sensors

Т	racking Volume	2014		
	PS Vacuum Chambe	ſ		
	Sut Box	Srt Box Souse Plate	ref	Layor Halulaburdles
	Support Ring L13Bot	Iom Kin Hount & UChannel L13	Botton Ket UCharnel US Bottom Pla	te bottom front
	L13Uchannel Align	mention UChannel L46	Bottom Kief WChannel L46 Bottom F	Plate bottom back
	Support Ring 13 Tap	Kin Mount < ref UChannel L15	Top < ref Uchannel L13TopPlate	e top front
		UChannel L46	Top < ref UChannel L46Top Plate	e top back

- HPSTracker2014GeometryDefinition: used for 2016 detector
- Two types of sensors and modules that bundle sensors

-SLAC

- HPSTracker2019GeometryDefinition: used for 2019 and 2021 detectors
- Three types of sensors and modules that bundle sensors

-SI AC

- Relevant code in hps-java/detector-model/src/main/java/org/ lcsim/geometry/compact /converter
 - HPSTrackerGeometryDefinition classes generate SVT geometry representation from compact.xml
 - Mother and daughter SurveyVolumes with same logical structure as physical SVT
 - Structure allows AlignmentCorrections for (front and back) uchannel, modules, and individual sensors
- Bug fixes already merged:
 - Remove hard-coded 700 µm shift in HPSTracker2019GeometryDefinition
 - Typo in name of AlignmentCorrection for top back uchannel
- This changes existing detectors:
 - Open PR: modified detectors to preserve 'original' state
 - Important exception HPS_Nominal_iter0: geometry output by code with no survey or alignment

<u>si ar</u>

Motivation for survey study

- Matt Solt's 2019 survey data is not used at the moment
 - OGP measurement data has to be transformed to correct coordinate system to be used in compact
 - Coordinate transformations Matt used are not the same as for Sho's 2016 survey
- Need a robust way to transform measured points to correct coordinate systems
 - Create a framework for handling SVT survey data and coordinate transformations that can be reused for future surveys
 - Documentation should include necessary measurements and how they are transformed to uchannel coords
 - All functions should be (unit) tested to ensure that they're working as intended

Sensor frames – defined by strips and sensor normal

• Sensor frames – defined by strips and sensor normal

- Sensor frames defined by strips and sensor normal
- Uchannel ballframe and pinframe

- Sensor frames defined by strips and sensor normal
- Uchannel ballframe and pinframe
- Fixture ballframe and pinframe

- Sensor frames defined by strips and sensor normal
- Uchannel ballframe and pinframe
- Fixture ballframe and pinframe

Uchannel

Necessary measurements and transformations

- Measure sensors in fixture
 - Transform measurement to fixture ballframe
 - For L1, L2: need measurement with transition piece
- Empty fixture: measure position of pins
 - Transform measurement to fixture ballframe
 - Combine with sensor in fixture ballframe measurement to get sensor position in pinframe
- Empty uchannel: measure position of pins
 - Transform measurement to uchannel ballframe
 - Combine with sensor position in pinframe to get sensor position in uchannel ballframe

<u>si ar</u>

hps-align/survey

New module hps-align/survey

- Built to work with Tom's underlying python structure
- Contains coordinate transformations and tests thereof
- Currently work in progress
- General structure:
 - _parser: reads measurement data from OGP output text file
 - _utils: utility functions find normal vectors, make basis, ...
 - _uchannel: transformations between uchannel _pinframe and _ballframe
 - _fixture: generates fixture ballframe and pinframe
 - _sensors: measurement of sensor in fixture

Preliminary results – pin basis in uchannel

- Matt0: results from Matt Solt's original code
- Matt: results from Matt Solt's code with some bug fixes

Sho	-95.2594	51.3976	-9.5359
Matt0	-0.0180	26.2182	-38.3293
Matt	95.2598	51.3949	-9.5212
Sarah	-95.2635	51.3832	-9.5551

Top L1 pin basis in U-channel fiducial frame

Sho	-95.2795	-51.4573	9.5403
Matt0	0.0296	-26.2017	-38.2223
Matt	95.2710	51.4608	-9.5718
Sarah	-95.2683	-51.4648	9.5839

Bottom L1 pin basis in U-channel fiducial frame

Preliminary results – pin basis in uchannel

Sho	-95.2519	52.9069	90.4129
Matt0	90.3949	95.2783	-48.1190
Matt	95.2062	52.8827	90.4765
Sarah	-95.2805	52.8964	90.3917

Top L2 pin basis in U-channel fiducial frame

Sho	-95.2388	-52.9364	109.5866
Matt0	109.5947	-95.2290	-48.3009
Matt	95.2400	52.9167	-109.5932
Sarah	-95.1902	-52.9322	109.6281

Bottom L2 pin basis in U-channel fiducial frame

Preliminary results – pin basis in uchannel

Sho	-95.2881	54.3996	190.4827
Matt0	190.4663	95.3327	-50.0550
Matt	95.2064	54.3859	190.5334
Sarah	-95.3340	54.4062	190.4639

Top L3 pin basis in U-channel fiducial frame

Sho	-95.2926	-54.4158	209.5887
Matt0	209.6006	-95.2746	-49.8707
Matt	95.2981	54.5002	-209.5724
Sarah	-95.2003	-54.4160	209.6371

Bottom L3 pin basis in U-channel fiducial frame

Preliminary results with bug fix

- Run reconstruction with and without 700 µm shims in L3, L4
- Reconstruction with L1 and L2 hits removed
- Requiring at least 8 hits on track
 - Top only has 8 layer hits because layer 7 is missing
- Looking at alignment monitoring plots

SI AC

• blue: with shims; red: without shims

 χ^2 distribution – top

• blue: with shims; red: without shims

nHits distribution - bottom, electrons

blue: with shims; red: without shims

Momentum distribution – bottom, electrons

blue: with shims; red: without shims

Momentum distribution – top, electrons

• blue: with shims; red: without shims

p vs ϕ – bottom, electrons

• Lose relatively more tracks on the positron side compared to the electron side

p vs ϕ – top, electrons

Shape of distribution without shims looks nice but is shifted in momentum

p vs tan λ – electrons

- Flatter distribution without shims
- Lose relatively more tracks on the positron side compared to the electron side

Summary – results with bug fix

- Top vs bottom: for 2D plots change in shape is related to having more hits on track in the bottom
- p vs tanλ:
 - Flatter distribution without shims
 - Lower rate at lower phi are accidentals, fee trigger in ${\rm tan}\lambda$ edge is higher than the SVT acceptance
- p vs phi: lose relatively more tracks on the positron side compared to the electron side

- Finish evaluating and integrating Matt Solt's survey data for the 2019 detector
 - Success for getting pin position in uchannel frame
 - Next: validate fixture to uchannel transformation pipeline
 - Goal: get L1 and L2 survey numbers into a compact
- Investigation of shim thickness
 - Scan of the shim thicknesses from 650 μm to 900 μm in 50 μm steps
 - Try using a momentum constraint and making the shim thickness a free parameter, excluding L1 and L2 hits

<u>si ar</u>

Remove all survey and alignment constants

• 700 µm shift in L3 and L4

Uchannel and module survey numbers only

Shift gone, systematic effect in top back