SIMPS 2016 Preselection

10/17/2023

Alic Spellman, Cameron Bravo, Matt Graham

Introduction

- Analysis note is ready for review up through the Preselection stage
 - Includes Intro, Theory, Expected Signal Calculation, Data/MC Info
- Will submit note to Analysis Committee today (after a last quick pass over)
- Thanks Cam, Matt, and Tom for helping guide and polish
- Presentation shows Preselection Cutflow N-1 plots, and Preselection Cutflow Efficiencies for Data sample, MC, and two signal points (40 MeV and 100 MeV Dark Vectors)
- Plan on pushing the Tight Selection development while the committee approves the first stage

Data and MC Info

- 2016 Lumi: 10703.81 nb⁻¹
- Used ~10% Data sample (BLPass4c) to establish Preselection
 - 1096.27nb⁻¹
- MC BKG Samples (w Ttongs trigger energy res smearing algo)

Sample	μ of ICS	σ of ICS	# of good files	# of generated events per file
RAD	66.36 μb	0.6678 μb	9940	10k
Trident-Trig	1.416 mb	0.004310 mb	9755	50k
WAB	0.1985 b	0.01973 b	9769	100k

Table 2: Normalization parameters for the RAD, Trident-Trig and WAB samples

• Signal MC: Generated with constant lifetime (cTau=200mm), mixed with beam

Reconstruction Level Cuts

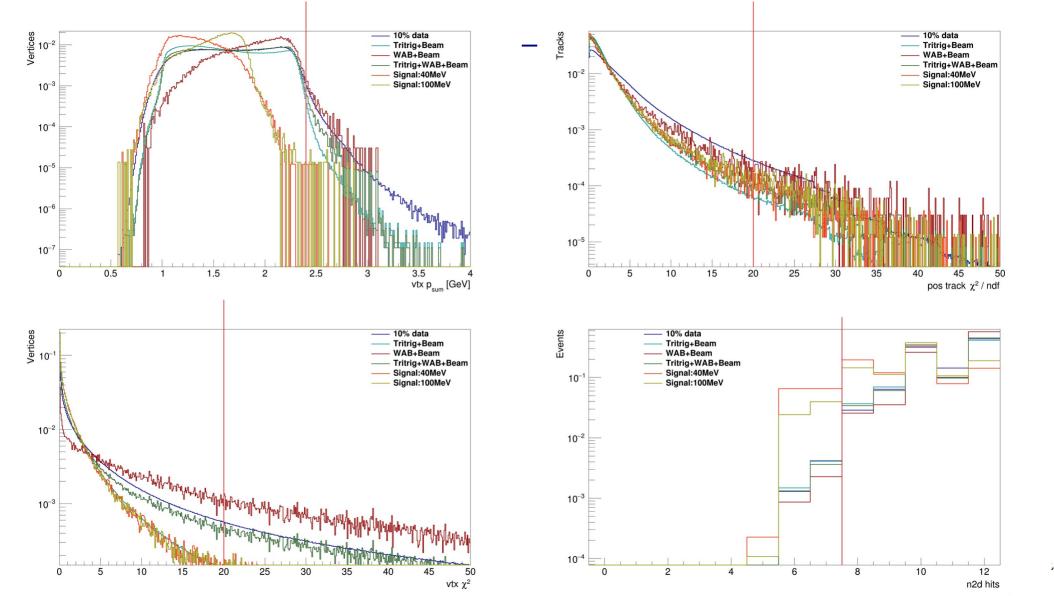
Cut Description	Requirement
ECal clusters in opposite volumes	$y_{e^-Cluster} \times y_{e^-Cluster} < 0$
Track-Cluster Time Difference (Data)	$ t_{Track} - t_{Cluster} - 56ns < 10 \text{ ns}$
Track-Cluster Time Difference (MC)	$ t_{Track} - t_{Cluster} - 43ns < 10$ ns
Track-Cluster X Position Difference	$ x_{TrackatEcal} - x_{Cluster} < 20.0 \text{ mm}$
Track-Cluster Y Position Difference	$ y_{TrackatEcal} - y_{Cluster} < 20.0 \text{ mm}$
Track-Cluster Time Difference	$ t_{Track} - t_{Cluster} < 6.0 \text{ ns}$
Cluster Time Difference	$ t_{e^+Cluster}-t_{e^-Cluster} < 2.5 \text{ ns}$
Beam electron cut	$p(e^-) < 2.15 \mathrm{GeV}$
Vertex Momentum	$p_{Vertex} < 2.8 GeV$

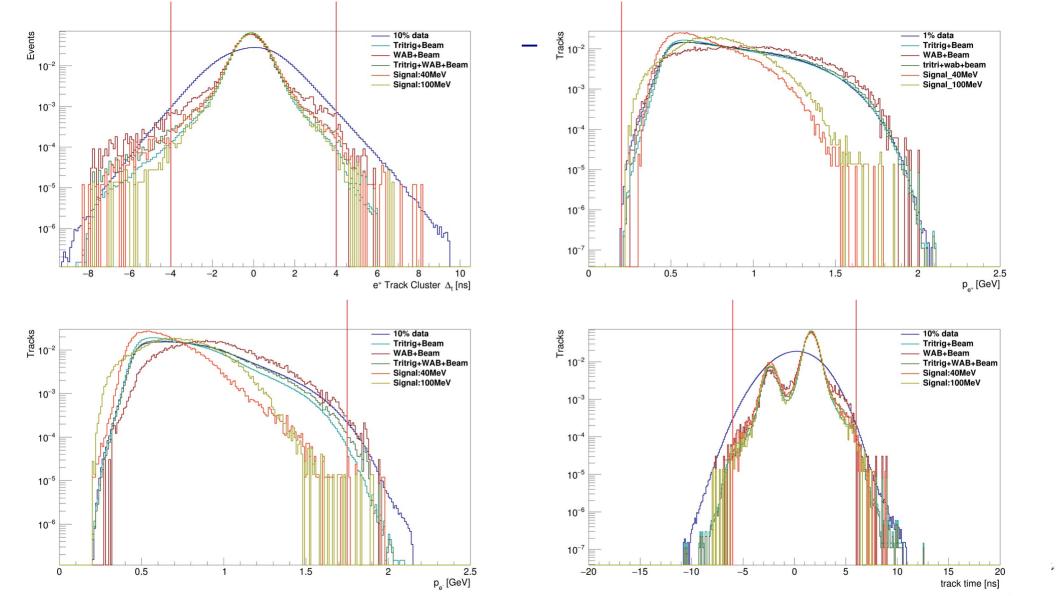
Table 3: Reconstruction level requirements. Track-Cluster time difference in MC and data is corrected using offsets calibrated in [7]. The track positions are found by extrapolating the track from the last layer hit to the face of the ECal.

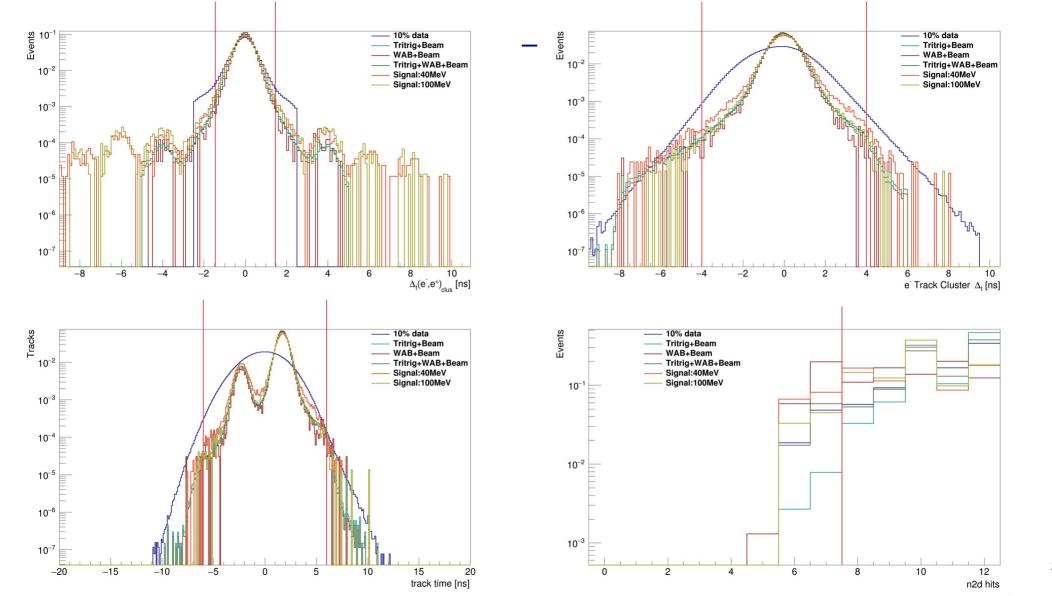
Preselection Cutflow

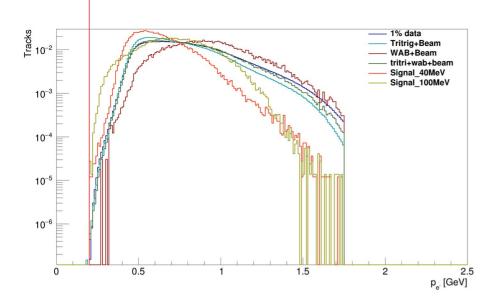
Cut Description	Requirement
Trigger	Pair1
Track Time	$ t_{track} < 6 \; \mathrm{ns}$
Cluster Time Difference	$ t_{e^+Cluster}-t_{e^-Cluster} <1.45~{ m ns}$
Track-Cluster Time Difference	$ t_{e^+Track} - t_{e^+Cluster} - \text{ offset} < 4 \text{ ns}$
Track Quality	$\chi^2/dof < 20$
Beam electron cut	$p(e^-) < 1.75 \mathrm{GeV}$
Minimum Hits on Track	$n_{2dHitsOnTrack} > 7$
Vertex Momentum	$p(e^-) + p(e^+) < 2.4 GeV$
Unconstrained Vertex Quality	$\chi_{unc}^2 < 20$

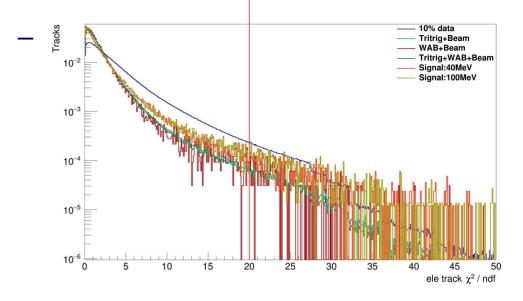
Preselection N-1 Plots



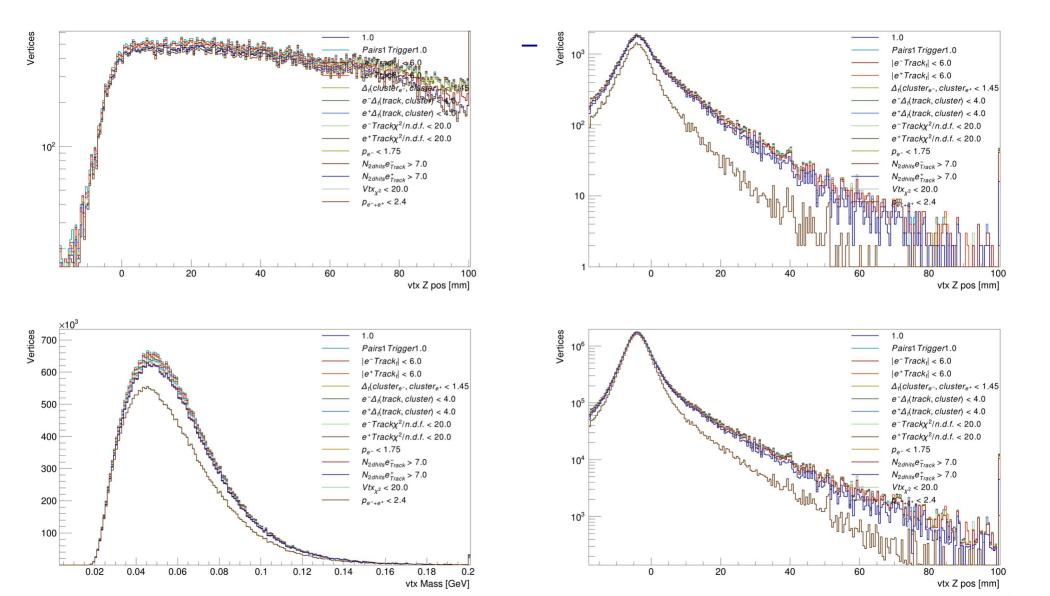

Preselection N-1 Cutflow Efficiency

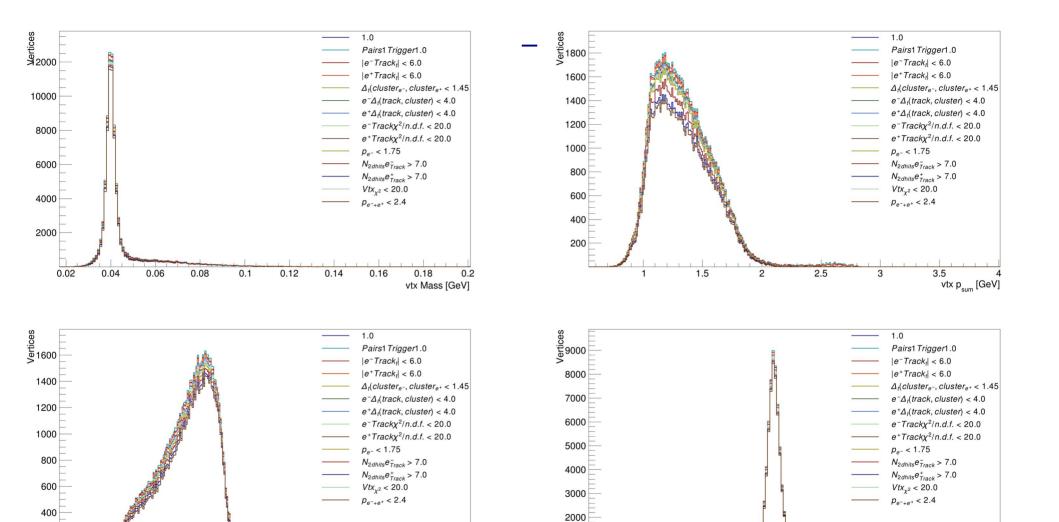

	Data Eff	Tritrig-Beam Eff	WAB-Beam Eff	Tritrig-WAB-Beam Eff	40 MeV Signal Eff	100 MeV Signal Eff
$ e^-Track_t < 6.0$	0.997	1	0.999	1	0.999	1
$ e^+ Track_t < 6.0$	0.997	0.999	0.999	0.999	0.999	1
$\Delta_t(cluster_{e^-}, cluster_{e^+} < 1.45$	0.961	0.991	0.992	0.991	0.98	0.98
$e^-\Delta_t(track, cluster) < 4.0$	0.991	0.998	0.999	0.998	0.997	0.999
$e^+\Delta_t(track, cluster) < 4.0$	0.988	0.998	0.991	0.997	0.997	0.999
$e^- Track^2/n.d.f. < 20.0$	0.987	0.996	0.996	0.996	0.99	0.989
$e^{+}Track^{2}/n.d.f. < 20.0$	0.981	0.996	0.982	0.992	0.991	0.988
$p_{e^-} < 1.75$	0.998	1	0.998	0.999	1	1
$N_{2dhits}one_{Track}^{-} > 7.0$	0.999	0.998	0.999	0.999	0.934	0.976
$N_{2dhits}one_{Track}^{+} > 7.0$	0.981	0.997	0.94	0.982	0.933	0.967
$Vtx_2 < 20.0$	0.832	0.972	0.645	0.861	0.968	0.973
$p_{e^-+e^+} < 2.4$	0.992	0.998	0.989	0.996	1	1


Table 5: "n-1" cut efficiency. The efficiency of the cut under consideration is calculated assuming that all other cuts applied correspond to an efficiency of 100%.



Preselection Cutflow




Preselection Cutflow Efficiency

							,					
	Data	Eff	Tritrig-Beam	Eff	WAB-Beam	Eff	Tritrig-WAB-Beam	Eff	40 MeV Signal	Eff	100 MeV Signal	Eff
1.0	3.8328e+07	1	7.31364e+06	1	59196	1	3.55889e+07	1	108200	1	87633	1
Pairs1Trigger1.0	3.82279e+07	1	7.31364e+06	1	59196	1	3.55889e + 07	1	108200	1	87633	1
$ e^-Track_t < 6.0$	3.76094e+07	0.98	7.24228e+06	0.99	58656	0.99	3.52498e+07	0.99	105878	0.98	85862	0.98
$ e^+Track_t < 6.0$	3.71464e + 07	0.97	7.22328e+06	0.99	58079	0.98	3.50654e + 07	0.99	104908	0.97	85004	0.97
$\Delta_t(cluster_{e^+}, cluster_{e^+} < 1.45$	3.53385e+07	0.92	7.13085e+06	0.98	57439	0.97	3.46391e+07	0.97	101999	0.94	82205	0.94
$e^{-}\Delta_t(track, cluster) < 4.0$	3.49091e+07	0.91	7.10968e + 06	0.97	57347	0.97	3.45534e + 07	0.97	101442	0.94	82043	0.94
$e^+\Delta_t(track, cluster) < 4.0$	3.42158e + 07	0.89	7.08966e + 06	0.97	56420	0.95	3.42896e + 07	0.96	100844	0.93	81853	0.93
$e^- Track \chi^2/n.d.f. < 20.0$	3.36416e+07	0.88	7.04596e+06	0.96	56102	0.95	3.40847e+07	0.96	99417	0.92	80639	0.92
$e^+ Track \chi^2/n.d.f. < 20.0$	3.26225e+07	0.85	6.99543e + 06	0.96	54423	0.92	3.35627e + 07	0.94	98087	0.91	79315	0.91
$p_{e^-} < 1.75$	3.24534e + 07	0.85	6.9883e + 06	0.96	54254	0.92	3.35038e+07	0.94	97986	0.91	79244	0.9
$N_{2dhits}e^{-}_{Track} > 7.0$	3.24111e+07	0.85	6.97724e+06	0.95	54212	0.92	3.34604e+07	0.94	91414	0.84	77312	0.88
$N_{2dhits}e_{Track}^{+} > 7.0$	3.17285e+07	0.83	6.95771e+06	0.95	51328	0.87	3.27726e+07	0.92	85459	0.79	74772	0.85
$Vtx_{\chi^2} < 20.0$	2.62837e+07	0.69	6.75204e+06	0.92	32982	0.56	2.8145e+07	0.79	82675	0.76	72744	0.83
$p_{e^-+e^+} < 2.4$	2.60451e+07	0.68	6.73881e + 06	0.92	32579	0.55	2.80163e+07	0.79	82664	0.76	72728	0.83

Table 6: The Preselection cutflow efficiency after each cut is applied in order.

1000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

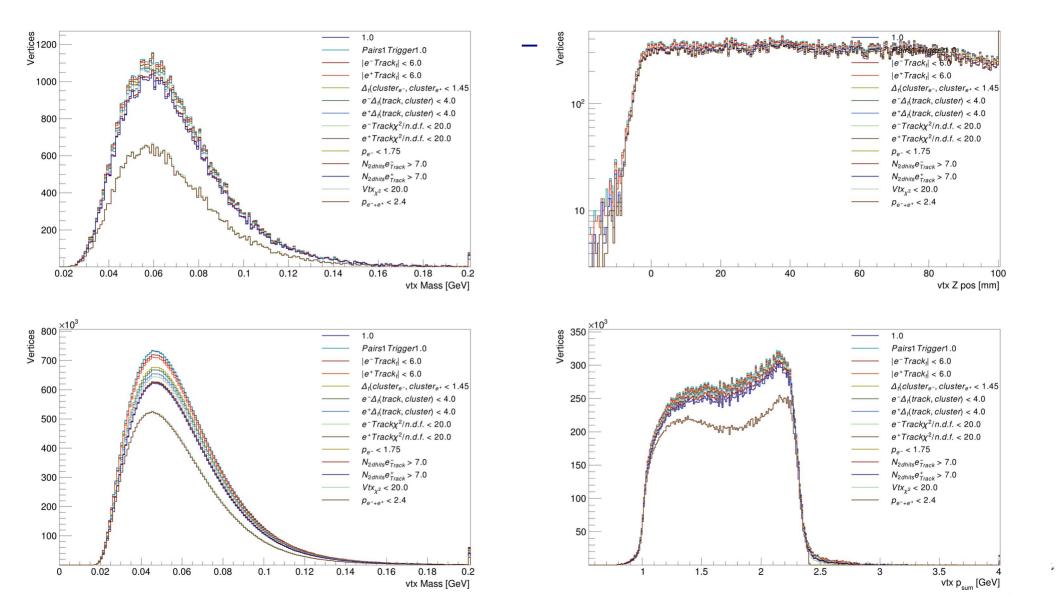
0.18

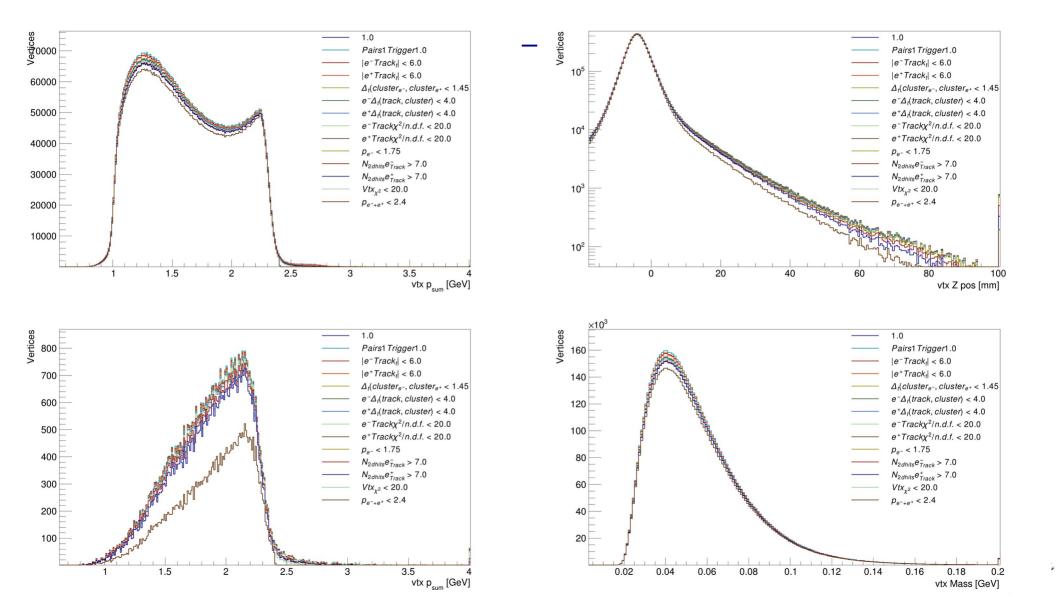
vtx Mass [GeV]

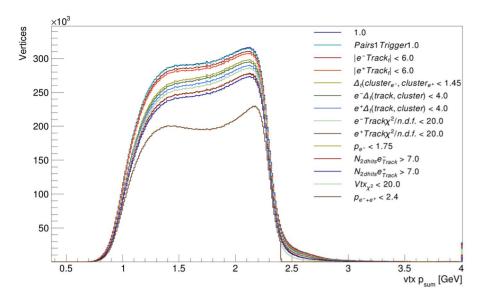
0.2

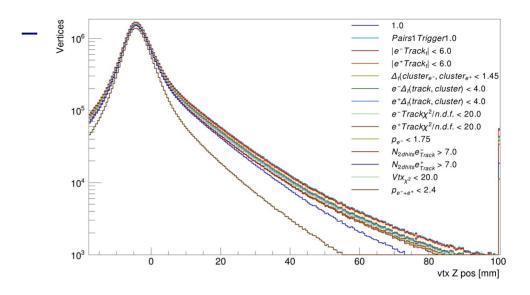
200

2.5


2


3.5


 $vtx\ p_{sum}\ [GeV]$


3

1.5

