Global Fitting Update

Emrys Peets - Stanford University
Cameron Bravo - SLAC
10/17/2023

Office of Science
SLAC
NATIONAL
ACCELERATOR LABORATORY

Road Map

1. Quick Recap
2. List of Updates
3. Latest large statistics study results and promising function
4. Round 2 Fitting
5. Seed Finding Strategy
6. Summary + Discussion

Important vocab to keep in mind

- IMD - Invariant Mass Distribution
- Window Range: Range by which a function is fit over some subset of the the IMD, generally of the form [WinMin, WinMax]
- WinMax: Maximum value for a given window range
- WinMin: minimum value for a given window range

2016 Limits

Signal yield and ε^{2} upper limits. Includes statistical and systematic effects plotted over limit bands*.

[^0]
器

Global Fit to the Invariant Mass Distribution (IMD)

May be able to take into account systematic features present in background shape.

Will be useful to freeze these features and determine reach.

Monotonically decreasing functions fitting the range above acceptance threshold
Error function used: $\quad \operatorname{Er}(x)=\frac{1}{2}\left(\operatorname{Erf}\left(\frac{\left(x-\left[q_{0}\right]\right)}{\left[q_{1}\right]}\right)+1\right)$
model acceptance threshold

$$
\begin{array}{rlrl}
f_{\text {dijet1 } 1}(x) & =\frac{p_{0}(1-x)^{p_{1}}}{x^{p_{2}}} & f_{\text {dijet2 }}(x) & =\frac{p_{0}(1-x)^{p_{1}}}{x^{p_{2}+p_{3} \log (x)}} \\
f_{\text {dijet3 }}(x) & =\frac{p_{0}(1-x)^{p_{1}}}{x^{p_{2}+p_{3} \log (x)+p_{4} \log ^{2}(x)}} & f_{\text {ATLAS1 }}(x) & =\frac{p_{0}\left(1-x^{1 / 3}\right)^{p_{1}}}{x^{p_{2}}} \\
f_{\text {ATLAS } 2}(x) & =\frac{p_{0}\left(1-x^{1 / 3}\right)^{p_{1}}}{x^{p_{2}+p_{3} \log ^{2}(x)}} & f_{U A 2_{1}}(x) & =p_{0} x^{p_{1}} e^{p_{2} x} \\
f_{U A 2_{2}}(x) & =p_{0} x^{p_{1}} e^{p_{2} x+p_{3} x^{2}} & f_{U A 2_{3}}(x) & =p_{0} x^{p_{1}} e^{p_{2} x+p_{3} x^{2}+p_{4} x^{3}} \\
f_{\text {cmsBH } 1}(x) & =\frac{p_{0}(1+x)^{p_{1}}}{x^{p_{2} \log x}} & f_{\text {cmsBH } 2}(x) & =\frac{p_{0}(1+x)^{p_{1}}}{x^{p_{3}+p_{2} \log x}} \\
f_{\text {ATLASBH } 1}(x) & =p_{0}(1-x)^{p_{1}} x^{p_{2} \log (x)} & f_{\text {ATLASBH } 2}(x) & =p_{0}(1-x)^{p_{1}}(1+x)^{p_{2} \log (x)} \\
f_{\text {ATLASBH } 3}(x) & =p_{0}(1-x)^{p_{1}} e^{p_{2} \log (x)} & f_{\text {ATLASBH } 4}(x) & =p_{0}\left(1-x^{1 / 3}\right)^{p_{1}} x^{p_{2} \log (x)} \\
f_{\text {ATLASBH5 } 5}(x) & =p_{0}(1-x)^{p_{1}} x^{\left.p_{2} x\right)} & f_{\text {ATLASBH6 } 6}(x) & =p_{0}(1-x)^{p_{1}}(1+x)^{p_{2} x} \\
\hline
\end{array}
$$

C. Bravo. *Thesis used to get list of monotonically decreasing functions*

Determining Optimal Window Range

Must consider mass resolution when cutting window ranges to prioritize good fits.
To fit a desired window range well, must consider 3σ below win_min and 3σ above win_max.

- want to fit [win_min, win_max]? \rightarrow need good fit over range $\left[\right.$ win_min- $3 \sigma_{\text {win_min }}$, win_max $\left.+3 \sigma_{\text {win_max }}\right]$

e.g. To have similar sensitivity to 2016 range of $[39,179] \mathbf{M e V}$

$$
\rightarrow \text { must fit }\left[39-3 \sigma_{39 \mathrm{MeV}}, 179+3 \sigma_{179 \mathrm{MeV}}\right] \sim \sim[34,203] \mathrm{MeV}
$$

HPS Mass Resolutions as shown in 2016 Result

Last Update ${ }_{(08 / / 8 / 23)}$

125 Functions $\rightarrow 131$ Functions

- add to function list by modifying previously used functions
- best pvalue $3 \mathrm{e}-3 \rightarrow 3.7 \mathrm{e}-3$ over range $[38,202] \mathrm{MeV}$

Incorporated Global Fit Toolkit into all current fit infrastructure.

- save, plot and organize best fits for each function over all tested window ranges
- includes, residual, residual / sqrt(N), residual ${ }^{2}$ / N, Pull plot

Higher statistics functionability: Batches

- fit_merger.py merge best fits for a given window range of all batches into a "best of" plot
- fit_compiler.py compile best fits of all functions together
"Rebinner" Tool
- Capable of rebinning any desired already fit function using terminal inputs
- can take into account any desired rebinning factor

Updates Since Last Update

Still using 131 Functions

I. Finished a 5 batch higher statistics study
A. Surprisingly good fit $-2.3 \mathrm{e}-2$ on range $[38,194] \mathrm{MeV}$
B. motivated rebinning, next study and parameter selection changes
II. Developed Parameter Storer
A. parses best_fit_info.txt file, selects parameters with fits above specified pval, stores in new param file
III. "Round 2" Fitting Procedure developed and tested
A. Uses parameters from^ and tries >1000 fits for each window range
B. Found 5ish functions with good fits with WinMin $\sim 50 \mathrm{MeV}$
IV. New Display Plot
A. fixes window minimum + varies window max (tested on round 2 results)
V. Increased Variance Study
A. purpose is more efficient filtering of functions / conserve computing power
B. 8 hour study
C. 11 Functions found with pval $>10^{-2}$ over range $[50,198] \mathrm{MeV}$

Workflow of Finding/Using Good Seeds

Selected Result of 5 Batch, 1250 iteration study:

- winmin range: $[28,72] \mathrm{MeV}-2 \mathrm{MeV}^{\text {Steps }}$
- winmax range: [178, 210] MeV -4MeV Steps

Promising Function:

- las3_plus_las6 (10 parameters)
- pvalue of $2.3 \mathrm{e}-2$ on window range $[38,194] \mathrm{MeV}$
- fit information, displays, rebinned info located here

res_per_statunc_h

pull_h

No rebinning: PValue of 2.3 e-2

- window range $[38,194] \mathrm{MeV}$

$$
-
$$

Rebinning factor 10: PValue of 2.3 e-2

- window range $[38,194] \mathrm{MeV}$

$$
{ }^{12}{ }_{8}^{14} \overline{{ }_{8}} \overline{\bar{E}}
$$

res_per_statunc_h

res_sq_per_n_h

pull_h

Rebinning factor 30: PValue of $2.3 \mathrm{e}-2$

- window range $[38,194] \mathrm{MeV}$

Residual Comparison

rebin factor: 0
rebin factor: 10
rebin factor: 30
:

\%

$\%$

Residual/ $\mathbf{N}^{\wedge}(1 / 2)$ Comparison

rebin factor: 0
rebin factor: 10
rebin factor: 30
res_per_statunc_h

res_per_statunc_h

Round 2 Fitting [$\mathrm{n}=1$]

Tested method of using parameters found for las3_plus_1 as the exact seeds used in fitting each window range for a hundred iterations.

best_fits_202_MeV_Max

Collecting Parameters

Motivated by spikiness of las3_plus_las6 fits. Now parsing stored best fit parameters for all tested functions over an arbitrary number of ranges.

- Useful in finding good starting seeds for next set of fits.
- Stores results in /functions/good_parameters/search_[search_range_n]_[threshold_n]/[function_name].txt

Terminal Input Example: python3 collect_params.py -n 28742 -x 178 2144-S 32504565
-Q 2 -F 1e-2 2e-2-B 5
$-s[$ winmin_r1_min , winmin_r1_max] [win_min_r2_min win_min_r2_max]

- Q [number of ranges]
-F [Threshold for range 1] [Threshold for range 2]
-B [n many batches to parse]

Output Example : /functions/good_parameters/search_4565_2e-2/ua23_mod_11.txt

Collecting Parameters [Visual]

Terminal Input Example: python 3 collect_params.py -n 28742 -x 1782144 -S 32504565 -Q 2 -F 1e-2 2e-2 -B 5
best_fits_194_MeV_Max

Collecting Parameters [Visual]

Terminal Input Example:

 python 3 collect_params.py -n 28742 -x 1782144 -S 32504565 -Q 2 -F 1e-2 2e-2 -B 5

Round 2 Fitting [generalized]

New work flow for round 2 fitting.

Round 2 Fitting [New Display Tool]

- To begin to determine where the maximum window range may break down in fitting, we want to see the trend in fitting across ranges with the window minimum remained fixed.
- r2_wmax_fit_compiler.py written to parse all fits of a particular search range

Terminal Input

python3 r2_wmax_fit_compiler.py -n 28722 -x 1862144 -B 5 -i
/sdf/group/hps/users/epeets/run/resonance_fitting/functions/good_parameters/search_3250_1e-2/ -S 3250 -F 1e-2

Challenge in Fitting

Goal Study

- $\sim 15-20$ batches of 50-70 iterations each
- increase variance to 5% per iteration, and then add a factor of $100-200 \%$ for each batch
- \quad win $\min =[35,65]$ in 1 MeV steps
- win max $=[190,300]$ in 1 MeV steps
- pull parameters from above study and use round 2 fitting infrastructure on
low (35-45), middle (45-55), and high (55-65) win min parameter search ranges

Wanted to conduct a large study with increased variance.

- Would have taken far too much computing time
- Shifted immediate priorities towards filtering out low performing functions after increasing variance on a single fitting window.
- Would have had ~2000 jobs taking 50 hours minimum each....
- Turns out variance idea listed would have been terrible anyway!

Challenge in Fitting

Goal Study

- ~15-20 batches of 50-70 iterations ean A
- increase variance to 5% per ite
- \quad win $\min =[35,65]$ in $1 \sim$ AD TD
- win max $=[190$
- pull parap
low (35-4
and use round 2 fitting infrastructure on 5), and high (55-65) win min parameter search ranges

Wanted to conduct a large study with increased variance.

- Would have taken far too much computing time
- Shifted immediate priorities towards filtering out low performing functions after increasing variance on a single fitting window.
- Would have had ~2000 jobs taking 50 hours minimum each....
- Turns out variance idea listed would have been terrible anyway!

Starting to Select Good Functions

Focusing on searching for better seeds.

- Fitting a single window range for all functions vastly saves computing time
- Window range study to follow on reduced list of functions

Changes to Fitting/Variance:

- Use initial parameters as gaussian mean and select new parameters randomly about a gaussian with width 1% [width $=.01$ * mean]
- If fit found with better pvalue in less than a specified many fits, make that the new mean
- If fit is not found with better pvalue, pick parameters from a gaussian width of 2% [width $=.01^{*}$ mean + $0.1^{*} 1^{*}$ mean $=.02 *$ mean $]$

General form: [width $=.01^{*}$ mean $+.01^{*}$ counter * mean] -
where counter is number of times fitting failed to find a better pvalue within a user input number of tries

New Save State Approach:

- Now fitting using a time based limit on fitting.
- Each time a better pvalue is found, write a file with best fit info
- Saves win_min, win_max, number of fits, chi2/ndof, pvalue, parameter values

Save State Workflow

python3/sdf/group/hps/users/epeets/run/resonance_fitting/makeGlobalFitScripts_svst.py -d
/sdf/group/hps/users/epeets/run/resonance_fitting/sh/ -m 50511 -x 198199 1-F
/sdf/group/hps/users/epeets/run/resonance_fitting/functions/ -B 1-T 8-v 1-f 100

$-\mathrm{T}=$ total fitting time [hr]
$-f=$ number of fits before increasing variance

8 Hour Study - [50, 198] MeV

1D Pvalue Distribution

chi2p_h
function_table_50MeV_198MeV

- ended up with 11 functions with pvalue $>10^{\wedge}-2$
- before only had 3
- Much higher statistics for many functions
- Would like to try 0.5% variance from selected parameters before filtering

[^1]| Function Name | Number of Fits | Chi2/Ndf | PValue |
| :--- | ---: | ---: | ---: |
| las3_plus_las6 | 1702.0 | 1.0443 | 0.0460 |
| ua23_nolin_plus_las1 | 1053.0 | 1.0457 | 0.0412 |
| las2_plus_las6 | 10053.0 | 1.0480 | 0.0342 |
| ua23_nolin_plus_las3 | 126.0 | 1.0487 | 0.0323 |
| dj1_plus_dj1 | 16601.0 | 1.0501 | 0.0286 |
| ua23_nolin_plus_las2 | 8124.0 | 1.0506 | 0.0275 |
| las1_plus_ua23 | 2391.0 | 1.0527 | 0.0228 |
| dj1_plus_las2 | 1110.0 | 1.0557 | 0.0174 |
| dj1_plus_ua22 | 2704.0 | 1.0599 | 0.0117 |
| las1_plus_ua21 | 2999.0 | 1.0600 | 0.0117 |
| las3_plus_las3 | 953.0 | 1.0605 | 0.0111 |
| dj1_plus_cms1 | 665.0 | 1.0640 | 0.0078 |
| las1_plus_las5 | 4455.0 | 1.0645 | 0.0075 |
| dj1_plus_las6 | 292.0 | 1.0654 | 0.0068 |
| las1_plus_las1 | 2905.0 | 1.0659 | 0.0064 |
| las1_plus_las6 | 1623.0 | 1.0661 | 0.0063 |
| ua23_er_er_10_2 | 8557.0 | 1.0680 | 0.0052 |
| ua23_er_er_8_4 | 8728.0 | 1.0734 | 0.0029 |
| ua23_er_er_11_2 | 36878.0 | 1.0755 | 0.0 |
| ua23_er_er_1 | 1.0759 | 0.0022 | |
| | | | |

Summary / Next Steps / Discussion

1. 11 Functions found with pval $>10^{-2}$ over range $[50,198] \mathrm{MeV}$
a. Huge improvement over previous update of 0 isolated functions
b. One more variance study needed, maybe 24 hours this time
2. Conduct optimal window range study with narrower list of functions a. top 10 functions (?)
3. Cam presented on reach effects found by fixing background fit parameters
a. need to implement select functions with optimal window range

backup

- Function Filter
- Poor fit example
- Representative Good Fit
- Making global fitting scripts for each function

Filter Use

Use command line options to filter function results using a lower bound p-value threshold for a given window minimum.
-F (specified window min) (specified pvalue threshold)

Chi2 Probability as function of Minimum Window

Chi2 Probability as function of Minimum Window

Poor Fit Example

Using dijet1

Representative "Good" Fit Using Global Fitting Tool

Residual / sqrt(N(m))

Residual $^{2} /(\mathbf{N}(\mathbf{m}))$

- UA23 Function
- Fit Range: 75 MeV - 210 MeV
- Good \Rightarrow pvalue $>10^{-2}$

Making global fitting scripts for every function

Terminal Input

python3/sdf/group/hps/users/epeets/run/resonance_fitting/makeGlobalFitScripts.py -d
$/ \mathrm{sdf} / \mathrm{group} / \mathrm{hps} / \mathrm{users} /$ epeets/run/resonance_fitting/sh/-rn28401-x 4072 2-F
/sdf/group/hps/users/epeets/run/resonance_fitting/functions/

(WinMin,WinMax)

Expected Output

Automated fitting terminal input

- emryspeets - epeets@sdf-login04:~/HPS/run/resonance_fitting/sh/sh_28_70...
!/usr/bin/scl enable devtoolset-8 -- /bin/bash
\#SBATCH --ntasks=1
\#SBATCH --time=24:00:00
\#SBATCH --mem=2000M
\#SBATCH --partition=shared
\#SBATCH --job-name=fitB
\#SBATCH --output=/scratch/epeets/log/cms 1_28_40.txt
python3 /sdf/group/hps/users/epeets/run/resonance fitting/global fit 3.py -i /sdf/gro $u p / \mathrm{hps} / \mathrm{users} / \mathrm{epeets/run/resonance} f i t t i n g / f u n c t i o n s / \mathrm{cms} 1 . t x t-\mathrm{P}$ /sdf/group/hps/users/ epeets/run/resonance_fitting/parameters/cms1.txt $-\mathrm{m} 2840 \quad 1-x 4072 \quad 2-\mathrm{R} \quad 0-\mathrm{Q} \quad 1000$ $\mathrm{d} / \mathrm{sdf} / \mathrm{group} / \mathrm{hps} / \mathrm{users} /$ epeets/run/resonance_fitting/functions/cms1_out/ -0 cms 1. root
[01] cms1.sh

[^0]: *band from toy mc background models

[^1]: top performing 20
 functions

