iDM Readout-Level Acceptance

Tom Eichlersmith

he/him/his

University of Minnesota

eichl008@umn.edu

September 19, 2023

Signal Sample Generation

- Have MADGRAPH model that calculates this diagram.
- Model now integrated into and being run from hps-mc
- Events displaced randomly and simulated
- Readout and reconstructed with standard 2016 steering files

Woes Continue

The number of events being output by the full chain is \sim 10 out of the input 10k.

This can be understood by looking at the truth-level information.

iDM Acceptance

What if we look at same-side vertices?

i.e. a vertex where both the e^- and e^+ are in the same half. Also called "conversion" vertices since they are also formed when a photon converts to e^+e^- in a detector layer.

- Require existence of same-side vertex and an electron track in the other half.
- Using a flat **10mm** z cut for this reach

Displacement Difficulties (again)

Caused by Conversion

While the same-side vertices *do* pick out the displaced vertex for signal better, they *do not* reject a reasonable amount of WAB background.

There are several different variables that have been suggested as useful tools for reducing this background distribution.

- Invariant mass
- Opening angle (total and delta-tan-lambda)
- \blacksquare *y*⁰ of the vertex
- Momentum magnitude sum (shows separation but unsure if physical)

Currently, these plots are strongly limited by the sample size of the signal distributions. I chose one of the signal points which shows O(1k) expected events (near maximum).

Caveat

The number of expected events is higher than the number of events actually in the sample. This is generally worrisome and could producing a "vanishing" of acceptance while implementing background cuts. Currently at ≈ 0.0001 selection efficiency.

Invariant mass of the vertex as calculated during reconstruction.

Opening Angle

Top: Track $\Delta tan(\lambda)$ **Bottom**: Angle Between Reconstructed Momentum Vectors

Both Calculations Show Lack of Separation

Tom Eichlersmith (UMN)

iDM Acceptance

8/13

Vertex Pointing At Origin

 y_0 is the vertical displacement of the vertex at the origin.

$$y_0 = y - \frac{p_y}{|p|}z$$

where position and momentum are for the vertex.

Momentum Magnitude Sum

Sum of momentum magnitudes of the two tracks in the conversion vertex.

Saved until last because this distribution shows the most separation.

Caveat

The WAB sample I'm using was designed for the standard, displaced vertex analysis. The drop off near 1GeV could very easily be non-physical.

Not all Hope is Lost!

Looser Trigger is Helpful

Observing Two Orders of Magnitude

improvement in readout efficiency for these events.

A higher readout efficiency combined with a larger luminosity makes a different (perhaps more complicated) displaced vertex analysis feasible.

Summary

- Moved to used recon-level determination of acceptance to be more realistic
- Observing competition between production rate wanting low m_{χ} and kinematics wanting high m_{χ}
- **No "goldilocks" zone is observed for 2016.** The readout efficiency is too poor, the reconstruction does not observe the produced electron, or the production rate is too low compared to the expected background.

Next

Write these conclusions and steps to reproduce into internal note for future reference

Questions

Vocabulary

MG iDM Model History

Mixed-Up Notation $A' \equiv Z' \equiv Z_D$

- 1. Model provided to me by Stefania Gori able to generate iDM from pp collisions in that state.
- 2. Updated the model for eN fixed target by porting over the frblock parameters and couplings from the *dark photon MG4 model* in hps-mc.
- 3. Observed issues with phase space accessibility as the dark photon mass was lowered.
- 4. Conferred with Tim and Stefania who confirmed this was non-physical behavior and most likely a bug.
- 5. Removed dark photon standard nucleus coupling which resolved this phase space issue.¹
- 6. Integrated the model into hps-mc to share with collaboration.
- 7. Update/patch to set $\epsilon=1$ in the model so it can be included in displacement studying later

¹I suspect that the way I put in the nucleus-photon interaction caused interference between the dark photon and the standard photon diagrams, leading to a closing of the phase space as the dark photon mass was lowered and began to appear more like a standard photon.

Parameters

Parameter	Block	Default	Description
Mchi	dm	0.1	m_χ Average fermion dark matter mass in GeV
dMchi	dm	0.02	Δ Difference between fermion DM masses in GeV
Map	hidden	1	$m_{A'}$ dark photon mass in GeV
Fixed by HPS Design			
GAN	frblock	~ 0.3	SM photon-nucleon coupling
GZPN	frblock	~ 0.3	Dark photon-nucleon coupling
Anuc	frblock	184	atomic weight of nucleus in amu
Znuc	frblock	74	atomic number of nucleus
Disconnected from Rate in HPS			
MHSinput	hidden	200	dark higgs mass in GeV
epsilon	hidden	0.01	SM-dark photon mixing strength
kap	hidden	10^{-9}	quartic dark higgs interaction strength
aXM1	hidden	127.9	$1/\alpha_D$

Table: Relevant MadGraph/MadEvent parameters available in param_card.dat

iDM Acceptance

Parameters

What are some limitations on these parameters?

Kinematic

Avoid kinematic, cosmological limits and/or degeneracy into different model.

$$2m_e < \Delta < rac{2}{3}m_\chi \qquad m_{A'} > 2m_\chi$$

Lifetime

A DM survey paper ArXiV 1807.01730 Eq (24)

$$\Gamma(\chi_2 \to \chi_1 \ell^+ \ell^-) \propto y \left(\frac{\Delta}{m_1}\right)^5 m_1 \qquad y \equiv \epsilon^2 \alpha_D \left(\frac{m_{\chi}}{m_{A'}}\right)^4$$

Technically, we don't actually use this equation for any calculations since it has pretty strict requirements on the parameters (mainly Δ we wish to avoid). In reality, I use MADGRAPH/MADEVENT to calculate the width of χ_2 and then scale that width linearly with ϵ^2 .

- $\Delta > 0$ so χ_1 and χ_2 are actually different mass states
- $\blacksquare \Delta > 2m_e \text{ so } \chi_2 \text{ will decay to } \chi_1 e^+ e^-$
- $\Delta < m_{\chi}$ so that the mass of χ_1 is real $m_1 > 0$
- $\Delta < \frac{2}{3}m_{\chi}$ so $\Delta \lesssim O(1)m_1$ so "DM freezeout is dominantly controlled by SM fermions"²
- $\blacksquare \ m_{{\cal A}'}>2m_{\chi} \ {\rm so} \ {\rm a} \ {\rm real} \ {\cal A}' \ {\rm decays} \ {\rm to} \ \chi_2\chi_1$
- $\blacksquare m_{A'} < E_{\text{beam}} \text{ so a real } A' \text{ can be produced}$
- $m_{A'}/m_{\chi}$ upper limit is defined by cross section too high and the cross section is too low for it to be produced within HPS's data set
- **m** $_{\chi} > 0$ obviously the dark fermions need to be massive
- $m_{\chi} < 2m_{\mu}$ to avoid losing cross section to muon pairs compared to electron pairs

TriTrig and WAB

Produced by Cam and available at SLAC. /sdf/group/hps/mc/2pt3GeV/HPS-PhysicsRun2016-Pass2/{tritrig,wab}/ecal_trig_res

Signal Used ► tomeichlersmith/hps-prod container release ► 2023-07-10 m_{A'} = 3m_χ, Δ = 0.6m_χ, m_χ = 30MeV and m_χ = 100MeV Run the idm job in hps-mc 200 times (iterating the random seed) Note: Only 122 runs of the 100MeV mass point succeeded, the failures were due to slurm evacuating my jobs so a user with higher prio could run. Merge resulting reconstructed slcio files into a single file Tuplize reconstructed slcio file with ► hpstr:ptrless

Opposite-Side Vertex Analysis

Soldier On So what if our rate is small, it's still non-zero.

21/13

Generate a large (200 run) signal sample with $\Delta = 0.6 m_{\chi}$, $m_{A'} = 3 m_{\chi}$, $m_{\chi} = 30 {\rm MeV}$

Readout+Reco Selection

The standard steering files appear to be selecting the appropriate events.

- Events selected have produced positron mostly ending in ECal volume
- Produced electron still smeared pretty widely

Uh Oh

30

20

10

1000

This is a hallmark sign of the detector "choosing" the wrong electron.

iDM Acceptance

500

End Point X [mm]

Large Fraction

A majority of the events accepted by the readout+reco chain have the recoil electron be *the* electron in the event.

- Increasing m_{\chi} has the kinematic benefit of getting more energy to the produced pair at the downside of production rate loss
- The approximate uniformity of the reconstructed signal (as compared to the signal truth) is encouraging – move forward using this parameter set to study the expected number of events.

Expected Number of Events

Y Axes

- Efficiency efficiency of entire analysis chain (including z-cut and reweighting for *e* dependence)
- Production total events produced with HPS 2016 Lumi and beam
- Acceptance product of efficiency and production, estimate of expected events in analysis

See the characteristic "bump". Yay!

Broaden this Search

Torn between high-mass helping improve acceptance and low-mass improve production rate.

Appears that these samples simply lucked into higher reach.

Few events at high z. Only $\sim 1/4$ have another reconstructed track.

These are all the samples whose expected number of events have a maximum above one thousand for some choice of ϵ .