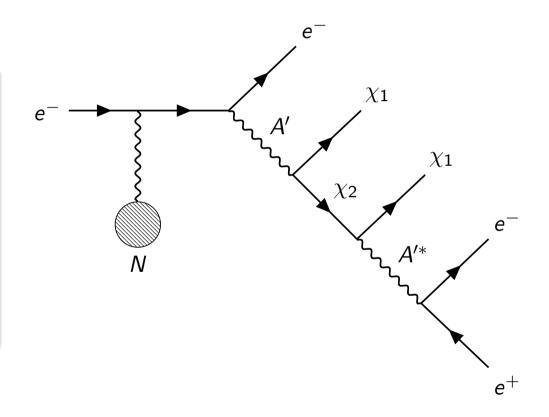
## iDM Readout-Level Acceptance

#### Tom Eichlersmith

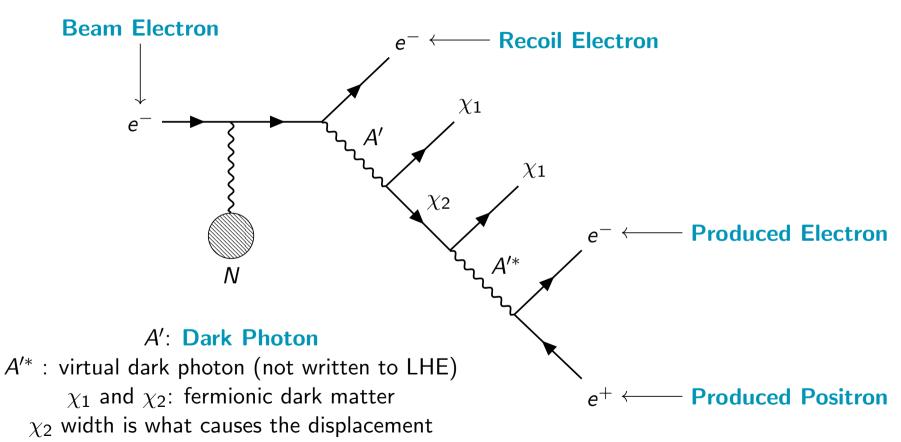
he/him/his
University of Minnesota
eichl008@umn.edu


August 22, 2023

### Status



### Signal Sample Generation


- Have MADGRAPH model that calculates this diagram.
- Model now integrated into and being run from hps-mc
- Events displaced randomly and simulated
- Readout and reconstructed with standard 2016 steering files

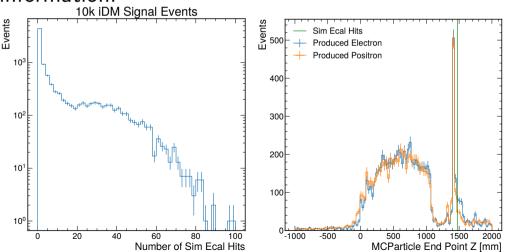


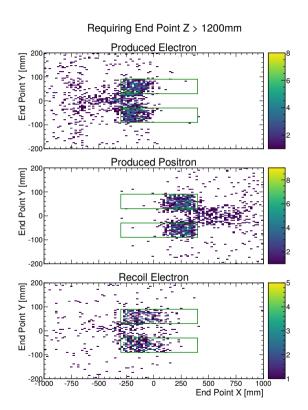
# Vocabulary



3/13




# **HPS** Acceptance




#### Woes Continue

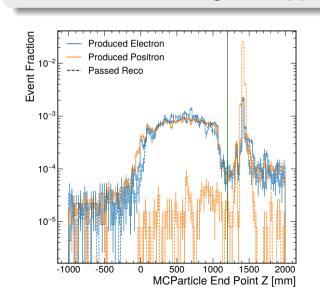
The number of events being output by the full chain is  $\sim 10$  out of the input 10k.

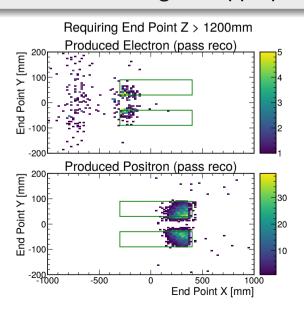
This can be understood by looking at the truth-level information.





#### Soldier On


So what if our rate is small, it's still non-zero.



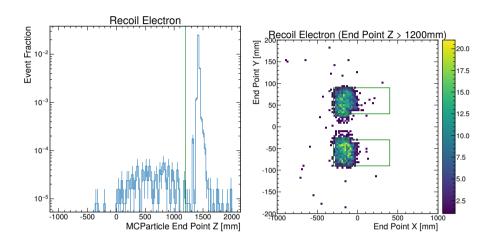

Generate a large (200 run) signal sample with  $\Delta=0.6m_\chi$ ,  $m_{A'}=3m_\chi$ ,  $m_\chi=30{
m MeV}$ 

#### Readout+Reco Selection

The standard steering files appear to be selecting the appropriate events.

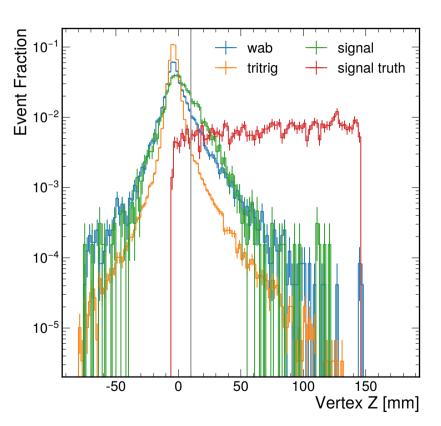





- Events selected have produced positron mostly ending in ECal volume
- Produced electron still smeared pretty widely

#### Uh Oh

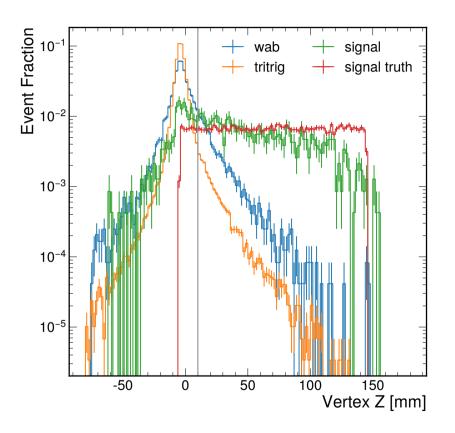
This is a hallmark sign of the detector "choosing" the wrong electron.


# Inspect the Recoil





## Large Fraction


A majority of the events accepted by the readout+reco chain have the recoil electron be *the* electron in the event.

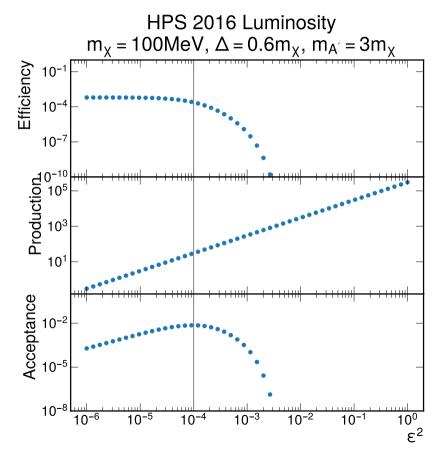


# Raise $m_\chi$ to $100 { m MeV}$



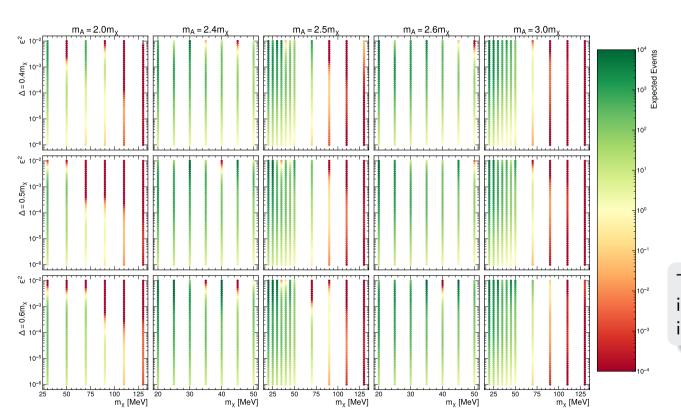
- Increasing  $m_{\chi}$  has the kinematic benefit of getting more energy to the produced pair at the downside of production rate loss
- The approximate uniformity of the reconstructed signal (as compared to the signal truth) is encouraging move forward using this parameter set to study the expected number of events.




## **Expected Number of Events**



#### Y Axes


- Efficiency efficiency of entire analysis chain (including z-cut and reweighting for  $\epsilon$  dependence)
- Production total events produced with HPS 2016 Lumi and beam
- Acceptance product of efficiency and production, estimate of expected events in analysis

See the characteristic "bump". Yay!



### Broaden this Search

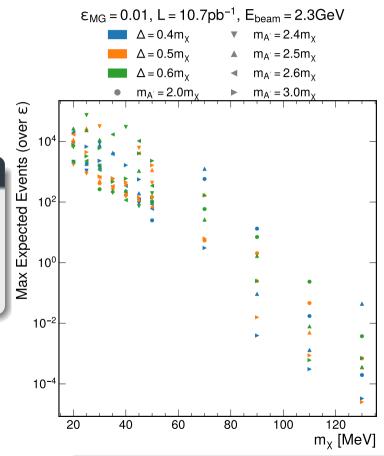




- $m_{A'} \in \{2.0, 2.4, 2.5, 2.6, 3.0\} m_{\chi}$
- $lack \Delta \in \{0.4, 0.5, 0.6\} m_{\chi}$
- $m_{\chi} \in (20, 130) \text{MeV}$
- fixed z cut at 10mm

Torn between high-mass helping improve acceptance and low-mass improve production rate.

## Best We Could Do

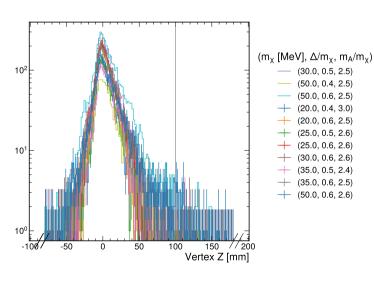


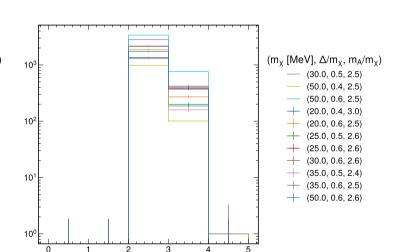

Condense this heat-map by getting maximum possible over  $\epsilon$ .

#### **Qualitative Conclusions**

- Low-Mass Production Rate is "winning" the tug-of-war
- Higher mass dominated by decreasing production rate

What if we try to look for these few events?





### Anti-HPS



## Appears that these samples simply lucked into higher reach.

Few events at high z. Only  $\sim 1/4$  have another reconstructed track.





Total Num Reco Tracks

These are all the samples whose expected number of events have a maximum above one thousand for some choice of  $\epsilon$ .

# Summary and Plans



#### Summary

- Moved to used recon-level determination of acceptance to be more realistic
- $\blacksquare$  Observing competition between production rate wanting low  $\emph{m}_{\chi}$  and kinematics wanting high  $\emph{m}_{\chi}$
- No "goldilocks" zone is observed. The readout efficiency is too poor, the reconstruction does not observe the produced electron, or the production rate is too low.

#### Next

Write these conclusions and steps to reproduce into internal note for future reference

Questions

# MG iDM Model History



#### Mixed-Up Notation $A' \equiv Z' \equiv Z_D$

- 1. Model provided to me by Stefania Gori able to generate iDM from pp collisions in that state.
- 2. Updated the model for eN fixed target by porting over the frblock parameters and couplings from the *dark photon MG4 model* in hps-mc.
- 3. Observed issues with phase space accessibility as the dark photon mass was lowered.
- 4. Conferred with Tim and Stefania who confirmed this was non-physical behavior and most likely a bug.
- 5. Removed dark photon standard nucleus coupling which resolved this phase space issue.<sup>1</sup>
- 6. Integrated the model into hps-mc to share with collaboration.
- 7. Update/patch to set  $\epsilon=1$  in the model so it can be included in displacement studying later

I suspect that the way I put in the nucleus-photon interaction caused interference between the dark photon and the standard photon diagrams, leading to a closing of the phase space as the dark photon mass was lowered and began to appear more like a standard photon.

## **Parameters**



| Parameter                     | Block   | Default    | Description                                          |
|-------------------------------|---------|------------|------------------------------------------------------|
| Mchi                          | dm      | 0.1        | $m_\chi$ Average fermion dark matter mass in GeV     |
| ${\tt dMchi}$                 | dm      | 0.02       | $\Delta$ Difference between fermion DM masses in GeV |
| Map                           | hidden  | 1          | $m_{A'}$ dark photon mass in GeV                     |
| Fixed by HPS Design           |         |            |                                                      |
| GAN                           | frblock | $\sim 0.3$ | SM photon-nucleon coupling                           |
| GZPN                          | frblock | $\sim 0.3$ | Dark photon-nucleon coupling                         |
| Anuc                          | frblock | 184        | atomic weight of nucleus in amu                      |
| Znuc                          | frblock | 74         | atomic number of nucleus                             |
| Disconnected from Rate in HPS |         |            |                                                      |
| MHSinput                      | hidden  | 200        | dark higgs mass in GeV                               |
| epsilon                       | hidden  | 0.01       | SM-dark photon mixing strength                       |
| kap                           | hidden  | $10^{-9}$  | quartic dark higgs interaction strength              |
| aXM1                          | hidden  | 127.9      | $1/\alpha_D$                                         |

Table: Relevant MadGraph/MadEvent parameters available in param\_card.dat

#### **Parameters**





#### **Kinematic**

Avoid kinematic, cosmological limits and/or degeneracy into different model.

$$2m_e < \Delta < \frac{2}{3}m_\chi \qquad m_{A'} > 2m_\chi$$

#### Lifetime

A DM survey paper ArXiV 1807.01730 Eq (24)

$$\Gamma(\chi_2 \to \chi_1 \ell^+ \ell^-) \propto y \left(\frac{\Delta}{m_1}\right)^5 m_1 \qquad y \equiv \epsilon^2 \alpha_D \left(\frac{m_\chi}{m_{A'}}\right)^4$$

Technically, we don't actually use this equation for any calculations since it has pretty strict requirements on the parameters (mainly  $\Delta$  we wish to avoid). In reality, I use MADGRAPH/MADEVENT to calculate the width of  $\chi_2$  and then scale that width linearly with  $\epsilon^2$ .

### iDM Parameter Limitations



- lacktriangle  $\Delta > 0$  so  $\chi_1$  and  $\chi_2$  are actually different mass states
- lacksquare  $\Delta > 2m_e$  so  $\chi_2$  will decay to  $\chi_1 e^+ e^-$
- lacksquare  $\Delta < m_\chi$  so that the mass of  $\chi_1$  is real  $m_1 > 0$
- lacksquare  $\Delta < rac{2}{3}m_{\chi}$  so  $\Delta \lesssim \mathcal{O}(1)m_1$  so "DM freezeout is dominantly controlled by SM fermions"  $^2$
- lacksquare  $m_{{\cal A}'}>2m_\chi$  so a real  ${\cal A}'$  decays to  $\chi_2\chi_1$
- lacksquare  $m_{A'} < E_{
  m beam}$  so a real A' can be produced
- $\mathbf{m}_{A'}/m_{\chi}$  upper limit is defined by cross section too high and the cross section is too low for it to be produced within HPS's data set
- $m_{\chi} > 0$  obviously the dark fermions need to be massive
- $lacktriangleq m_\chi < 2m_\mu$  to avoid losing cross section to muon pairs compared to electron pairs

# Sample Detail



## TriTrig and WAB

Produced by Cam and available at SLAC. /sdf/group/hps/mc/2pt3GeV/HPS-PhysicsRun2016-Pass2/{tritrig,wab}/ecal\_trig\_res

### Signal

Used ▶ tomeichlersmith/hps-prod container release ▶ 2023-07-10

- $lacksquare m_{A'}=3m_{\chi}$ ,  $\Delta=0.6m_{\chi}$ ,  $m_{\chi}=30 {
  m MeV}$  and  $m_{\chi}=100 {
  m MeV}$
- Run the idm job in hps-mc 200 times (iterating the random seed)
  - Note: Only 122 runs of the 100MeV mass point succeeded, the failures were due to slurm evacuating my jobs so a user with higher prio could run.
- Merge resulting reconstructed slcio files into a single file
- Tuplize reconstructed slcio file with hpstr:ptrless