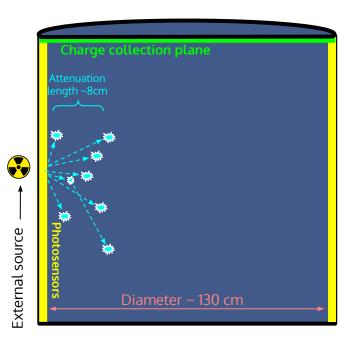
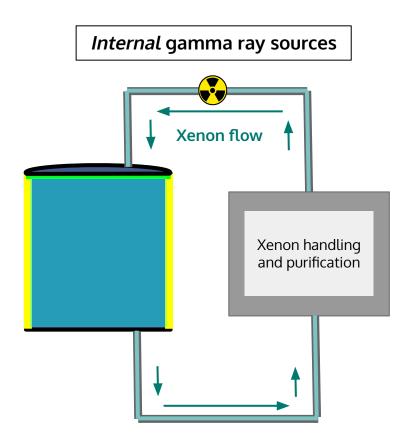

MeV-scale internal calibration sources for large LXe detectors

Brian Lenardo


Calibration techniques for LXe detectors


External gamma ray sources

Calibration techniques for LXe detectors

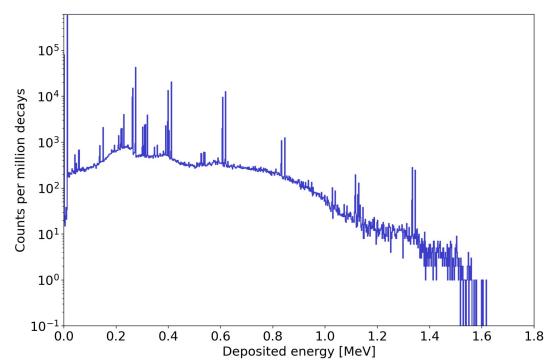
External gamma ray sources

Desirable qualities for multi-tonne-scale detectors

1. Mixes easily into xenon

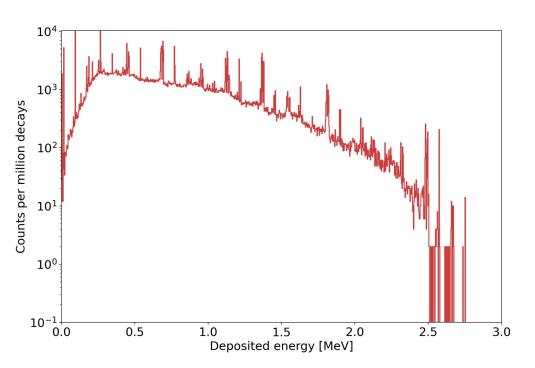
Doesn't stick to surfaces or get removed by purifiers; noble gases ideal

2. Half-lives of O(day)

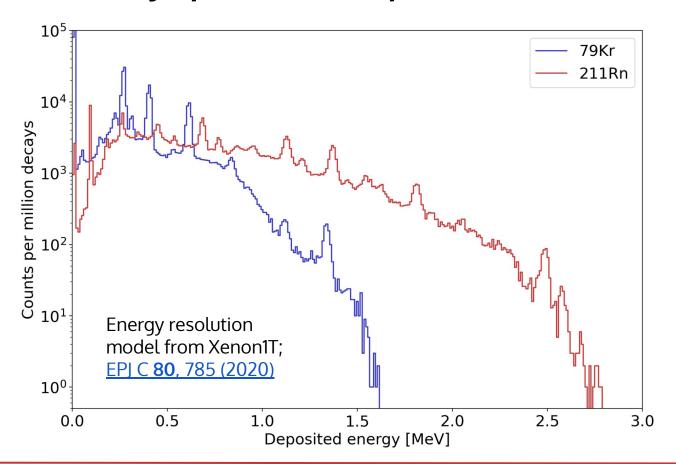

Ensure good mixing of the source into the detector, assuming recirculation timescales of O(day), but also doesn't hang around forever

3. Gamma lines at O(MeV) energies

Provide calibration lines at energies relevant for OnuBB, but not alphas (which have dramatically different charge/light response in LXe)



Proposal #1: ⁷⁹Kr


Half-life	35.04 hr
	(n,g) on 78Kr Commercial DD generator with water moderator
	could produce O(kBq) per gram of 78Kr
Q-value	1.626 MeV
Long-lived radioactive daughters?	No

Proposal #2: ²¹¹Rn

Half-life	14.6 hr
Production	Nuclear reactions at accelerator
mechanism	facilities: ²⁰⁹ Bi(⁶ Li,4n) ²¹¹ Rn; EC decay of ²¹¹ Fr beams; etc. Existing literature describes production of O(GBq) per run (used in medical isotope production)
Q-value	2.892 MeV
Long-lived radioactive daughters?	Yes (²⁰⁷ Bi)

Simulated decay spectra in a liquid xenon medium

Conclusions

Detectors beyond the tonne scale may require new calibration tools for characterizing the energy scale in the ~MeV regime

- External sources will only calibrate the outer edges of the detectors
- Many dissolvable sources currently in use, but they do not produce ~MeV-scale EM radiation signals (gammas/betas) at fixed energies

High-Q-value electron capture sources may be promising in this regard

- Can emit gamma rays (not alphas) at known energies, producing peaks rather than broad spectra
- Two such sources shown here: ⁷⁹Kr and ²¹¹Rn
- There are certainly more possibilities to explore!