Cherenkov Light Separation in LXe for Improved Bkg Rejection

Ako Jamil

- Princeton University
- October 26, 2023

Workshop on Xenon Detector Ovbb Searches, SLAC

Light Transport Simulations With Chroma

- Main Advantages:
 - Easy to use
 - Detailed geometry possible through CAD model import •
 - GPU-acceleration allow up to 300x faster photon propagation than Geant4
- Being/was used in other experiments/projects:
 - EXO-200, nEXO, MicroBoone, PROSPECT, SNO(+), DUNE
- Publications with simulations based on Chroma:
 - Phys. Rev. D 97, 052006 (2018)
 - Phys. Rev. D 101, 072002 (2020)
 - JINST 17 (2022) P07018

Goal #1: Energy Resolution (0 uetaetaeta background reduction)

- Require energy resolution on the order of $\sigma/Q_{\beta\beta}\sim 0.5$ % to suppress leakage of $2\nu\beta\beta$ background events into the ROI
- Energy resolution in large LXe detectors typically limited by noise in the light channel
 - Limited by total light collection efficiency ϵ (dependent on $\lambda_{\rm abs}$ and $\lambda_{\rm scat}$ of LXe)
- What is the total light collection efficiency achievable in a ktonne LXe detector? (Need at least 10%)

For sufficiently low charge noise the energy resolution is dominated by the light collection efficiency ϵ

PTE vs Absorption Length in LXe

• The photon transport efficiency (PTE) is defined as

Photon transport is mostly diffuse due to length scale of the detector and relative short scattering length

- Simulation at each point includes 10^8 photons
- λ_{abs} poorly constrained due to size of previous experiments
 - Scales with xenon purity (no upper bound)
 - LZ and XENON1T use $30 \,\mathrm{m}$ and $50 \,\mathrm{m}$, respectively
 - \rightarrow Detector parameters and simulation inputs in the backup slides

Photon Transport Efficiency [%]

Goal #2: Time Resolution (Solar ν background reduction)

- Based off: Nucl.Instrum.Meth.A 922 (2019) 76-83 •
- Rejection of solar neutrinos from 8B based on time of flight separation between scintillation and Cherenkov light
 - Charge current interactions are considered negligible: $\nu + {}^{136}\text{Xe} \longrightarrow e^- + {}^{136}\text{Cs}^{(*)}$
 - Elastic scattering of neutrinos off of electrons more tricky: $\nu + e^- \longrightarrow \nu + e^-$
 - Discrimination of single β of energy $E_{\beta} = Q_{\beta\beta} \pm FWHM/2$ against $0\nu\beta\beta$
- Use of Chroma allows more realistic detector geometry including reflections off of components

Fraction of Photons vs Time

- Cherenkov and scintillation photons better separated in time in a ktonne detector compared to a tonne-scale detector
- Within first 10 ns Cherenkov photons make up 80% of all detected photons

Impact on Sensitivity

- A 10 ns time resolution yields best result with 65 % signal efficiency at 65 % background rejection
- Increase in sensitivity ~ 13% or
 ~ 35% for a enriched or natural LXe detector
 10³¹ Sensitivity (90%)
- Sub-ns 3D Photon-To Converter feasible and development 3D Photon-To-Digital Converter for For Motivation and Future Works, J.-F. F (2021) 2, 598
 Disc. pot. (3)

Summary

- Simplifications used in this analysis:

 - Directionality of Cherenkov light not exploited
 - Events only simulated in the center of the detector •
- Simplified detector design allows to reach necessary PTE $\sim 40\%$ with reasonable absorption and scattering lengths in LXe
- A $10\,\mathrm{ns}$ time resolution yields best result with $65\,\%$ signal efficiency at $65\,\%$ background rejection

Single wavelength used instead of full spectrum for scintillation and Cherenkov light

BACKUP SLIDES

Wavelength Dependence

- For simplicity only simulate scintillation photons at 178 nm and Cherenkov photons at 300 nm
- Optical properties at
 - 178 nm taken from nEXO
 - 300 nm either scaled from values at 178 nm or found literature values

Parameters of a ktonne Detector

PARAMETER	VALUE	UNITS
Vessel height	7,4	m
Vessel diameter	7,4	m
Drift length	7,32	m
Field ring inner diameter	7,3	m
Field ring width	10	mm
Field ring height	4	mm
Field ring spacing	20	mm
Number of field rings	365	

→ nEXO-like Design: Photo-detectors (SiPMs) covering barrel behind the FSRs

Parameters of a ktonne Detector

PARAMETER	SCINT.	CHERENKOV
Wavelength	178nm	300nm
LXe Absorption Length	20m	50m
LXe Scattering Length	30cm	242cm
LXe Index of Refraction	1,69	1,43
Cathode	80%	90%
Field Shaping Rings	80%	90%
Anode	20%	38%
Vessel	0%	0%
Diffuse Reflectivity of all components above	0%	0%
Teflon Specular Reflectivity	0%	0%
Teflon Diffuse Reflectivity	95%	95%
SiPMs	https://arxiv.org/abs/ 1910.06438	

→ nEXO-like Design: Photo-detectors (SiPMs) covering barrel behind the FSRs

Scintillation Light Yield from EXO-200

Recombination Fluctuations from EXO-200

Procedure for Estimating Background Rejection (Design #1)

Procedure for Estimating Background Rejection (Design #1)

ROC Curves

- •
- background rejection
- (2021) 2, 598

