Liniversität Münster

Removing ²²²Rn from xenon for large-scale rare event searches

Workshop on Xenon Detector $0\nu\beta\beta$ Searches, Steps Towards the Kilotonne Scale, Oct. 25-27, 2023, SLAC

- Background by ²²²Rn & its progenies for dark matter and $0\nu\beta\beta$ searches
- Rn mitigation strategies
- Rn removal systems
- Online cryogenic distillation
- Conclusions

ÊÊ

living.knowledge

Christian Weinheimer – University of Münster (member of XENON, DARWIN/XLZD, technical member of nEXO)

Rare event searches with large xenon detectors search for $0\nu\beta\beta$ and for dark mater

0 ν ββ: sharp peak in 2e⁻ spectrum at Q-value **Dar**

Dark matter: nuclear (electron) recoil

final goal: neutrino fog

Christian Weinheimer – Workshop on Xenon Detector $0\nu\beta\beta$ Searches, 25-27 Oct. 2023, SLAC

Limiting backgrounds in xenon DM & $0\nu\beta\beta$ detectors

Expected dark matter scattering rate:

- 1 event per 10t and year
- ⇒ Profit only from larger experiments if the experiment remains background-free

Most background problems solved by

- going underground
- extra (self-)shieldings & vetos

Two remaining backgrounds:

- solar neutrinos, non-shieldable
- intrinsic radioactive noble gases:
 - ⁸⁵Kr, ²²²Rn and progenies, (³⁷Ar, ³⁹Ar, ¹³⁶Xe)

A closer look to ⁸⁵Kr (³⁹Ar) and ²²²Rn with its progenities

Why: intrinsic noble gas contaminants ⁸⁵Kr and ²²²Rn (\rightarrow ²¹⁴Pb) (similarly ³⁹Ar, as well as calibrating isotopes, e.g. ³⁷Ar)

- > leakage events from the low energy β -spectrum contaminate ROI for dark matter WIMP search
- searches for new physics inside the electronic recoil spectrum only possible with low levels of impurities

Universität Münster

²²²**Rn:** $t_{1/2} = 3.8$ d, continuously emanating from detector materials

- Background from β -decay of ²¹⁴Pb which cannot be identified by accompanying α -decay
- Background from γ -decay of ²¹⁴Bi for $0\nu\beta\beta$ decay searches if not fully BiPo-tagged

³⁹Ar: $8 \cdot 10^{-16}$ (1 Bq per kg ^{nat}Ar) Reduction needed also for $0\nu\beta\beta$ to reduce trigger rate ?

Christian Weinheimer – Workshop on Xenon Detector $0\nu\beta\beta$ Searches, 25-27 Oct. 2023, SLAC

Christian Weinheimer – Workshop on Xenon Detector $0\nu\beta\beta$ Searches, 25-27 Oct. 2023, SLAC

cS1 [PE]

Rn mitigation I

Coating

recoil

range

1. Screen materials for gamma emission and radon emanation and selection

- coating (MPIK)
- hermetically-sealed TPC (U Freiburg)
- xenon ice (LBNL, U Texas)

Christian Weinheimer – Workshop on Xenon Detector $0\nu\beta\beta$ Searches, 25-27 Oct. 2023, SLAC

O 222 Rn

O 226Ra

Bulk material

2

1

Material

surface

Rn mitigation II

Profit from the larger volume of huge LXe detectors

- 3. Use the larger volume-to-surface ratio reducing Rn emanation from walls further
- 4. Identify radon progeny decays by observing co-locoalized progenitor or progeny decays

- 5. Extract GXe from regions of large Rn emanation/injection (e.g. cable entering TPC), into Rn removal system (e.g. by chromatography or distillation)
- 6. High flow LXe extraction from detector into high through-put Rn removal system (through-put time constant $\tau_{removal} < \tau$ (²²²Rn)), e.g. cryogenic distillation at XENONnT

LZ: In-line Radon reduction system

- reduce ²²²Rn background from in warm parts only (feedthroughs, cables, etc.)
 - i. tiny fraction of entire purification flow: 1 slpm (GXe) : 500 slpm (LXe)
 - ii. expected to contribute ~50% of Rn burden in TPC
- not set up to purify all 10 t of LXe
- sequestration of atoms in activated trap (10 kg synthesized charcoal) until most ²²²Rn nuclei decay
 - i. chromatographic separation: v(Xe)/ v(Rn) (-85°C) \approx 1000
- to obtain reduction of 90% (10x), sequestration time \geq ln(10)· τ_{Rn} = 12.7 days

courtesy: Wolfgang Lorenzon University of Michigan

LZ: In-line Radon reduction system

- reduce ²²²Rn background from in warm parts only (feedthroughs, cables, etc.)
 - i. tiny fraction of entire purification flow: 1 slpm (GXe) : 500 slpm (LXe)
 - ii. expected to contribute ~50% of Rn burden in TPC
- not set up to purify all 10 t of LXe
- sequestration of atoms in activated trap (10 kg synthesized charcoal) until most ²²²Rn nuclei decay
 - i. chromatographic separation: v(Xe)/v(Rn) (-85°C) \approx 1000
- to obtain reduction of 90% (10x), sequestration time \geq ln(10)· τ_{Rn} = 12.7 days

LXe swing system for radon removal under investigation

Delopments for large flow xenon capture from air might lead to a much more efficient materials to separate radon from xenon

Christian Weinheimer – Workshop on Xenor

courtesy:

Wolfgang Lorenzon

University of Michigan

www.Ings.infn.it

Münster

Laboratori Nazionali del Gran Sasso (LNGS), Italy

Christian Weinheimer – Workshop on Xenon Detector $0\nu\beta\beta$ Searches, 25-27 Oct. 2023, SLAC

Removing Kr by cryogenic distillation at XENON1T/nT

Make use of the different vapour pressures (volatilities) of Kr, Xe and Rn Processing flow rate: up to 6.5 kg/h (18 SLPM) Separation factor for Kr: $6.4^{+1.9}_{-1.3} \cdot 10^5$ Kr removal (XENONnT): $\frac{^{nat}Kr}{Xe} < 2 \cdot 10^{-13}$, achieved: $\frac{^{nat}Kr}{Xe} < 4.8 \cdot 10^{-14} = 48$ ppq

Kr removal achieved by "online distillation": Prog. Theo. Exp. Phys. 5, 053H01 (2022)

Universität Münster

Eur. Phys. J. C77, 275 (2017)

Universität Münster Reduction by a continuous ²²²Rn removal system

$$r(R_{\text{RRS}} \to \infty, f, \epsilon) = \frac{\lambda_{\text{Rn}} + f}{\lambda_{\text{Rn}}} \cdot \frac{k_{\text{tot}}}{k_{1a} + (1 - \epsilon)k_{1b}} \approx 2 \cdot 2$$

$$\text{LXe extraction}$$

$$\text{reduction factor with total}$$

$$\text{LXe exchange time } T:$$

$$GXe \text{ extraction reduction}$$

$$factor, typically$$

$$r_{GXe} \approx 2 \text{ (XENONnT)}$$

$r_{LXe} \approx 1 + \frac{\tau_{Rn}}{T} \approx 2 \text{ to } 4$

Different Rn source types:

- Type 1b: enters the GXe phase with a rate k_{1b} from cables or lines to the outside, can be extracted directly with a fraction ε to the Rn removal system
- Type 1a: directly enters the LXe phase in the detector with a rate k_{1a}, can be extracted with a relative low *f* to the RRS
- Type 2: enters the Rn removal system with a rate k₂ before the LXe phase

 $pprox \mathbf{2} \cdot \mathbf{2} = \mathbf{4}$ for a XENONnT at a flow of pprox 75 kg/h

Online distillation: E. Aprile et al. (XENON Collab.) Prog. Theo. Exp. Phys. 5 (2022) 053H01

Radon removal system for XENONnT

- Radon as less volatile noble gas is trapped in reboiler until it decays
- Radon-depleted GXe extracted from the top condenser and reliquified in the bottom reboiler
- Target flow: 80 kg/h (225 slpm) ($T < \tau_{Rn}$)
- Reduction factor: 100 between inlet and top
- Enrichment factor: 1000 between inlet and bottom
- Reflux ratio: 0.5

Universität Münster

- 1 kW cooling power required at top
- LXe inlet and outlet → require additional

 2 kW cooling power for LXe outlet
 Re

 Solution: Clausius-Rankine cycle with phase changing medium xenon
 (kind of heat pump)

3.8 m **Top Condenser** Custom bath-type LN₂/GXe heat exchanger JINST 17 (2022) P05037 PackageTube Large-surface package material **Auxiliary** Commercial GXe/GXe heat exchangers Compressor — Custom four cylinder magnetically-coupled piston pump: JINST 16 (2021) P09011 Reboiler Custom bath-type Xe/Xe heat exchanger JINST 17 (2022) P05037

Overall system: EPJ C82 (2022) 1114

Christian Weinheimer – Workshop on Xenon Detector $0\nu\beta\beta$ Searches, 25-27 Oct. 2023, SLAC

XENONnT – Novel radon removal system

Universität Münster

Again cryogenic distllation - key parameter:

- liquid xenon inlet and outlet allowing high flow
- > flow of up to 0.4 l/min LXe = 225 slpm ≈ 80 kg/h
- reduction factor 2 for cryogenics' sources by GXe extraction at 25 slpm

Radon concentration at XENONnT

XENONnT – Novel radon removal system

Universität Münster

Again cryogenic distllation - key parameter:

- liquid xenon inlet and outlet allowing high flow
- > flow of up to 0.4 l/min LXe = 225 slpm ≈ 80 kg/h
- reduction factor 2 for cryogenics' sources by GXe extraction at 25 slpm
- another reduction by factor of 2 for sources within detector by high-flow LXe extraction at 200 slpm

Radon concentration at XENONnT

Proof of basic removal concept: Eur. Phys. J C77, 358 (2017) Design of XENONnT system: Eur. Phys. J. C82, 1104 (2022)

Rn requirements for xenon-based dark matter exp.

²²²Rn: $t_{1/2} = 3.8 \text{ d}$,

continuously emanating from detector materials

²²²Rn concentrations achieved so far

- Background from $\beta\text{-decay}$ of ^{214}Pb which cannot be identified by accompanying $\alpha\text{-decay}$
- Background from γ -decay of ²¹⁴Bi for $0\nu\beta\beta$ decay searches if not fully BiPo-tagged
- Additional backgrounds from plate-out of ²¹⁰Pb

Rn requirements for xenon-based dark matter exp.

²²²Rn: $t_{1/2} = 3.8 \text{ d}$,

continuously emanating from detector materials

²²²Rn concentrations achieved so far

- Background from β -decay of ²¹⁴Pb which cannot be identified by accompanying α -decay
- Background from $\gamma\text{-decay}$ of ^{214}Bi for $0\nu\beta\beta$ decay searches if not fully BiPo-tagged

Additional backgrounds from plate-out of ²¹⁰Pb

Rn requirements for xenon-based dark matter exp.

²²²Rn: $t_{1/2} = 3.8 \text{ d}$,

continuously emanating from detector materials

²²²Rn concentrations achieved so far

- Background from β -decay of ²¹⁴Pb which cannot be identified by accompanying α -decay
- Background from $\gamma\text{-decay}$ of ^{214}Bi for $0\nu\beta\beta$ decay searches if not fully BiPo-tagged

Additional backgrounds from plate-out of ²¹⁰Pb

LowRad goals:

C Develop technologies to reach another factor 10 reduction in ⁸⁵Kr (30 ppq ^{nat}Kr) and ²²²Rn (0.1 μBq/kg) by online removal: *"less than 1 Rn atom in 100 mol of xenon"*

Cryogenic distillation system for DARWIN/XLZD

LXe in

LXe out

erc

How to purify 50 t of Xe from Rn in $\leq 2d$?

 Full heat pump to achieve enormous cooling throughput: 75 kg/h (LowRad demonstrator) 750 kg/h (final system)

- Demonstrator

Universität Münster

radon-free heat exchangers 2nd Xe heat pump cycle should include online Rn decay monitor

- Final system:

should be integrated with purification system from electronegative impurities and with online Kr removal system should be installed in a water shield to avoid Xe activation

- R&D and demonstrator within ERC AdG LowRad

Conclusion

- Radon mitigation needs to start with material screening & selection as well as smart detector design, all Xe-systems including purification system must be "Rn emanation free"
- Rn-progenies decays in large Xe detectors should be identified by spatial & delayed coincidences
- Online Rn removal is the last step, two cases
 - a) Xe extraction at places with high Rn emanation/injection: can be handled by moderate flow systems
 - b) High flow Xe extraction is ultima ratio, requires large through-put systems, probably LXe flow
- Rn removal from Xe by
 - a) chromatography: demonstrated by LZ at $\mathcal{O}(1 \text{ slpm})$
 - b) LXe swing system under development at LZ for larger flows
 - c) Cryogenic distillation system demonstrated at XENONnT at O(80 kg/h = 225 slpm)
 - d) Advanced cryogenic distillation system is being developed within ERC AdG LowRad for concentrations down to 0.1 μBq/kg and flows of \mathcal{O} (750 kg/h)
 - → enough for a kilotonne xenon experiment for Xe extraction from high Rn injection places

CW acknowledges funding by

