R&D for LAr + Xe + photosensitive dopants

Fernanda Psihas

A. Mastbaum, F. Psihas, J. Zennamo. <u>arXiv:2203.14700</u> "Xenon-Doped Liquid Argon TPCs as a Neutrinoless Double Beta Decay Platform" PhysRevD.106.092002

A. Mastbaum, F. Psihas, J. Zennamo. <u>arXiv:2203.14700</u> "Xenon-Doped Liquid Argon TPCs as a Neutrinoless Double Beta Decay Platform" PhysRevD.106.092002

NEEDS

Depleted argon

Xenon doping at 2%

<3% energy resolution

This talk:

Impacts of the R&D to enable 1% energy resolution at 2.5 MeV in kTon LArTPCs using photosensitive dopants.

Photosensitive Dopant Concept

To collect the most energy deposited in the LAr we could **convert the light to charge**

Introducing **photosensitive dopants** will cause lightto-charge conversion

7 Fermilab

Photosensitive Dopant Concept

To collect the most energy deposited in the LAr we could **convert the light to charge**

Introducing **photosensitive dopants** will cause lightto-charge conversion

This technology enables LArTPC physics accross energy scales

口Fermilab

MeV-scale Energy Resolution

Simulation of charge enhancement in a full LArSoft LArTPC detector including:

wire noise, microphysical effects, detector response, noise filtering, signal processing, and energy reconstruction

1% Energy Resolution at the Q value

Conservatice assumption:

No improvement from nominal DUNE charge readout Noise level SNR = 20 or ~ 300ENC

MeV scale energy resolution improves by 5x.

Enregy resolution would be sufficient to resolve 0vBB signal.

🛟 Fermilab

nresho

Lower thresholds from 1.1 MeV to 10keV

GeV (accelerator energy range) Simulation Simulation **Pure Liquid Argon** Doped Liquid Argon 28 cm 28 cm **‡** Fermilab

Fernanda Psihas

Overcoming recombination

The non-linear response usually requires a recombination correction for energy reconstruction.

Doped LAr yields a **more linear** detector response.

Energy resolution imprtovements for low energy protons.

辈 Fermilab

Physics this enables

‡ Fermilab

Fernanda Psihas

R&D Necessary

Charge enhancement w/dopants

Calibration for low energy signals

TinyTPC (next talk,

Characterization of pixel readouts at <10MeV

Impact of contaminants on dopants

Dopant demonstration

Nucl. Instr. and Meth. A 242 (1986) 256 D.F. Anderson

Xenon doping stability

arxiv:2209.05435, Accepted by PRC E. P. Bernard, et. al,

Removing Xe

Energy resolution Stability of mixture linearity Survival of VUV light **Energy resolution** signals in dopants measurements Characterization of Concentration VUV in dopants + Xe characterization Charge enhancement Interaction dopants w/ w/dopants + Xe filter Characterization of **Removing dopants** charge in dopants + Xe

Talk to us about collaborating on this R&D!

口Fermilab