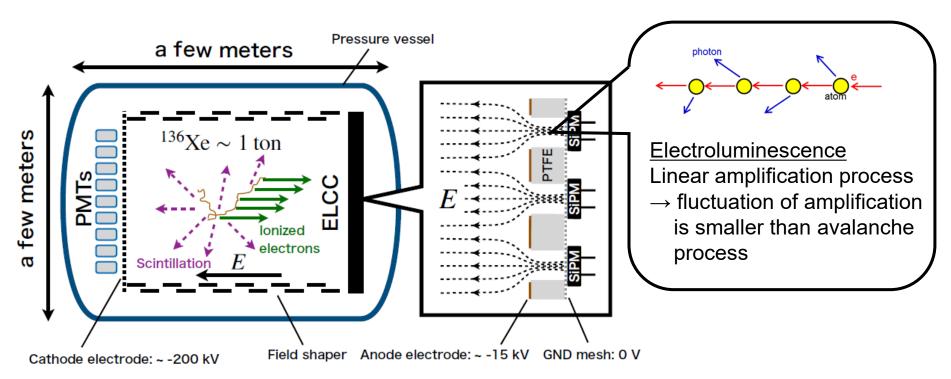
Status and prospects of the AXEL experiment

Shinichi Akiyama, Tohoku University for the AXEL Collaboration

27 Oct 2023, Workshop on Xenon Detector $0\nu\beta\beta$ Searches, SLAC

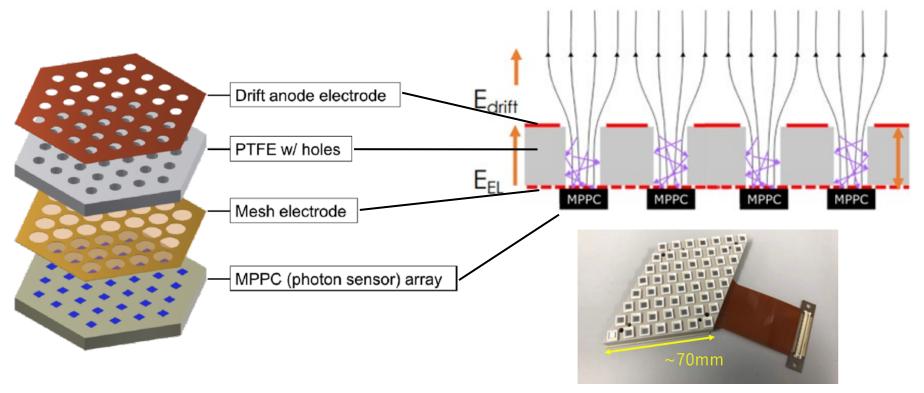
180L prototype detector


R&Ds for 1000L detector

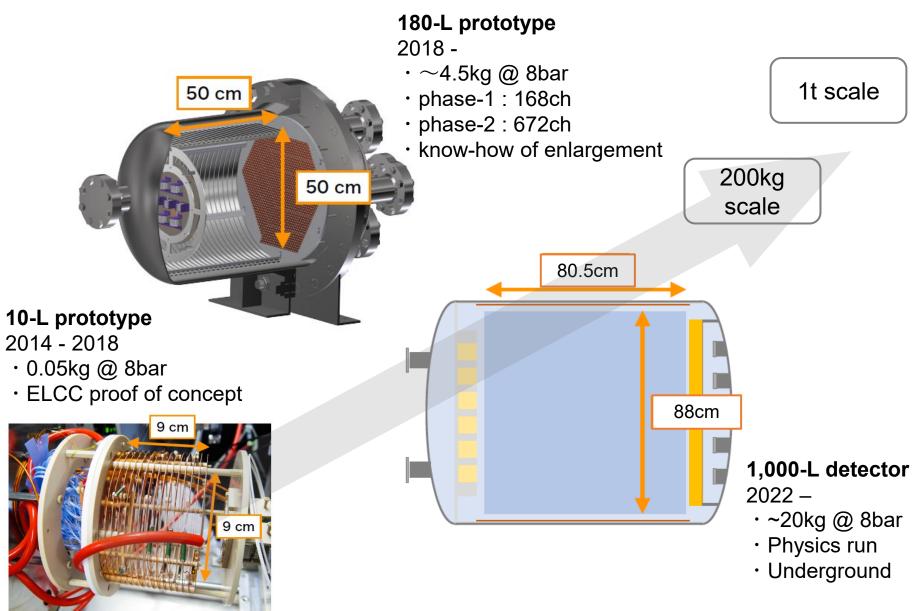
180L prototype detector

R&Ds for 1000L detector

A Xenon ElectroLuminescence detector


- High pressure xenon gas TPC
- Advantages for $0\nu\beta\beta$ search
 - Energy resolution : EL process for energy measuring
 - Large mass : technology exists for ton scale ¹³⁶Xe
 - BG rejection : 3D track is obtained with cell readout structure(ELCC)

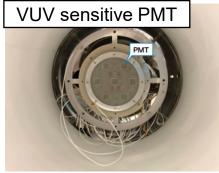
4

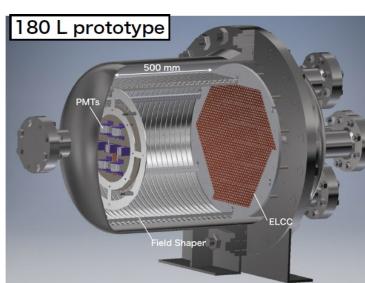

ELCC : Electroluminescence Light Collection Cell

- Detect EL lights with VUV-sensitive MPPC
- EL process \rightarrow Good energy resolution
- Amplification in cells \rightarrow Uniform detection, Tracking
- Rigid unit structure \rightarrow Mechanically easy to extend

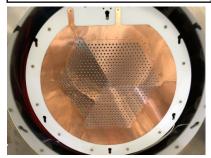
a unit of MPPC array

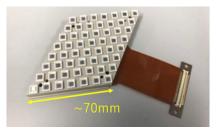
Roadmap of experiment

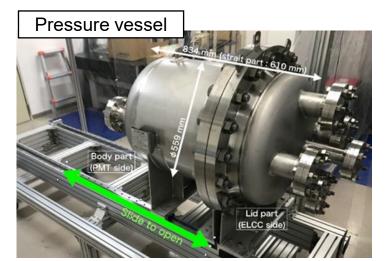


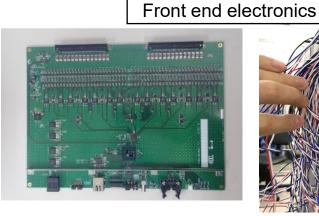

180L prototype detector

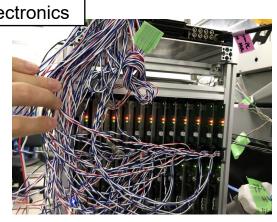
R&Ds for 1000L detector

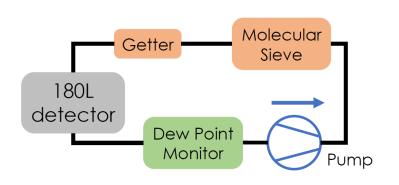

180L prototype detector








ELCC anode(12units)

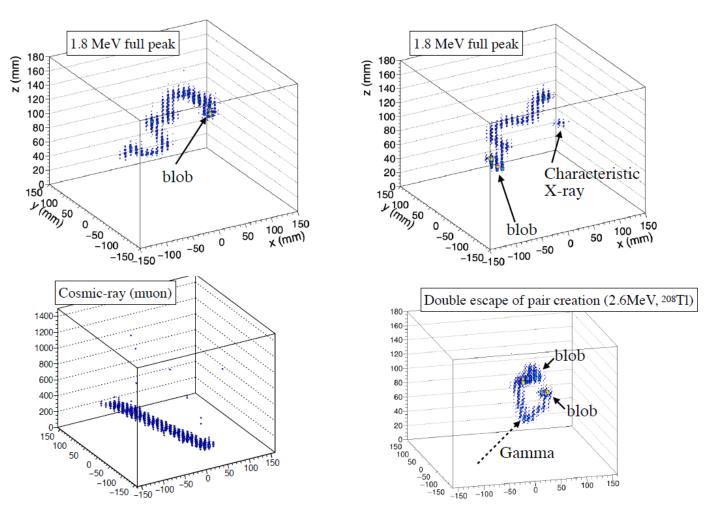

Energy measurement

Two kinds of source were used for measurement

- ⁸⁸Y : 898keV γ, 1836keV γ
- Thoriated tungsten rod : Thorium series

Xenon circulation and purification

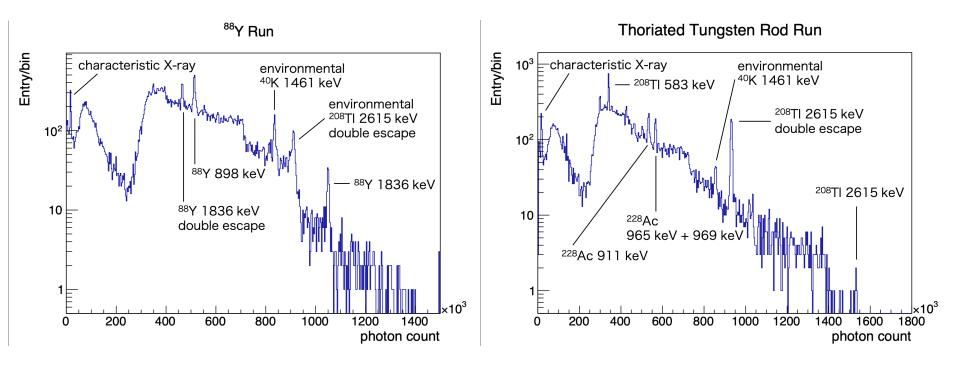
- Purification
 - Molecular Sieve : H₂O, O₂, CO₂, etc
 - Getter : N₂
- Pressure, temperature, and dew point are monitored.



gas system for 180L prototype

bt 3584.8 3584.8 3584.8 3584.8 0.048% 3218.5 0.023% 2734.1 94.3% 898 keV 1836.1 keV 0

Event topology


- Bragg peak appears as "blob" in the endpoint of track
- Characteristic x-ray cluster is separated with main photo electron cluster \rightarrow Can be used to reject gamma ray BG

Energy spectrum

• 88Y Run

- ⁸⁸Y : 898 keV, 1836keV, double escape of 1836keV
- Thoriated Tungsten Rod Run
 - ²⁰⁸TI : 583keV, 2615keV, double escape of 2615keV
 - ²²⁸Ac : 911keV, 965keV and 969keV
- Environmental ⁴⁰K, ²⁰⁸TI are also observed

Breakdown of energy resolution

- The contributions from various sources to the energy resolution for the peak of ⁸⁸Y 1836keV gamma ray
- Resolution of data and estimation are in agreement within the margin of error
- If all improvement successfully done, expect 0.31% @ Q-value

	FWHM
Error in the time variation correction	0.32~%
Fluctuation of the number of initial ionization electrons	0.29~%
Fluctuation of the EL conversion	0.24 %
Error in the EL gain correction	0.23~%
Recombination	0.22~%
Fluctuation of the MPPC non-linearity	0.18~%
z mis-reconstruction	0.16~%
Variation in time bin of time variation correction	$\lesssim 0.16$ %
Accuracy of the MPPC recovery times	$\lesssim 0.11~\%$
Error in the z -dependence correction	$\lesssim 0.11~\%$
Offset of the baseline	$\lesssim 0.09~\%$
Fluctuation of the attachment	$\lesssim 0.02$ %
Position dependence of the EL gain	0 %
Waveform processing in the FEB	0~%
Estimation total	0.64% to 0.68
Data total	(0.73 ± 0.11)

MPPC upgrade $0.24\% \rightarrow 0.14\%$

achieve target drift electric field (100V/cm/bar) $0.22\% \rightarrow 0\%$

improve scintillation photon detection efficiency $0.16\% \rightarrow 0\%$

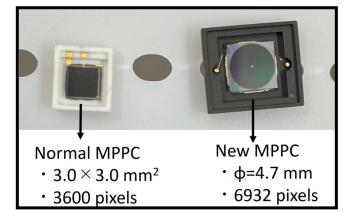
can be improved with longer and more stable data taking

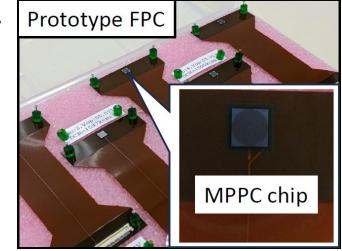
> (0.60±0.03)% @ Q-value

180L prototype detector

R&Ds for 1000L detector

Hikida, XeSAT2023

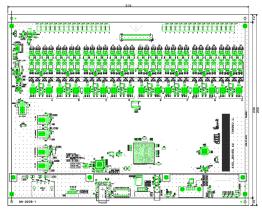

New MPPC


Large-area MPPC

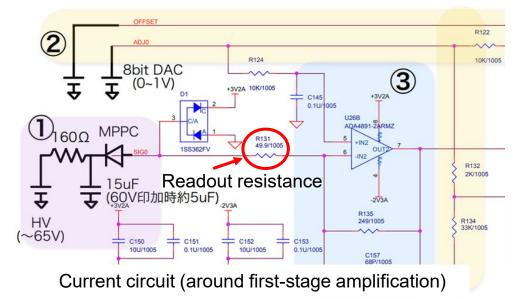
- ~ twice larger area than before
- Reduce statistical fluctuation of EL photon
- \rightarrow Improve fluctuation of EL conversion

MPPC without package

- Remove ceramic package because of its RI contamination
- Place the MPPC chip directly on flexible printed circuit (FPC)
- Finish the evaluation of prototype FPC with 1 channel

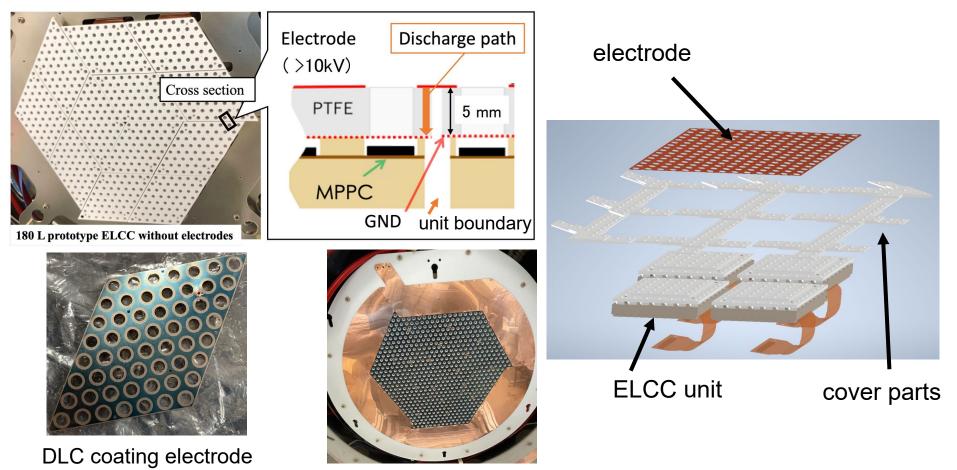


Readout electronics board


Higher density for space saving

- $56 \rightarrow 64$ ch/board
- Low head connector

Optimization



- Gain optimization for new MPPC signal size
- Readout resistance $50\Omega \to 10\Omega$ to suppress MPPC nonlinearity by bias voltage drop

Suppression of discharge at ELCC

- High resistive Diamond-like carbon (DLC) as electrode
- Add alternate layer that cover the edges of ELCC unit to extend discharge path

ELCC plane with DLC electrode

 $(150M\Omega/mm^2)$

High voltage supply

Cockcroft-Walton(CW) multiplier

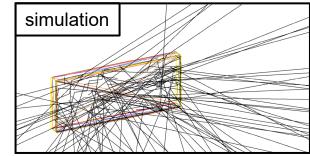
- Low AC input to High DC output inside the chamber
 - \rightarrow Avoid high voltage feedthroughs
- Implemented on FPC
- Varnish coating to prevent surface discharge

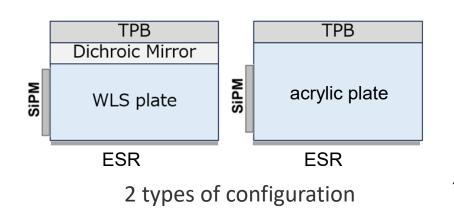
Performance evaluation with 180L prototype

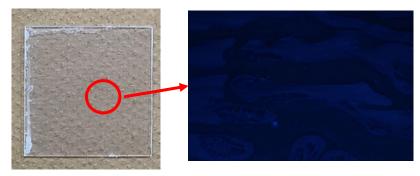
- 44.6kV with 30 steps in atmosphere is achieved
- Instability of AC amplifiers due to capacitive loading
 - Shorten the cable
 - Consider using LC resonance
 - Higher power AC supply
- Target voltage for 1000L : 76kV (@8bar)
 - Countermeasure for instability
 - More steps

tor, diode resista

resistance chain






capacitor

Scintillation photon detection

- For now, 7 VUV-sensitive PMTs are used
 - Signal of each PMT is 1p.e. level
 - \rightarrow dark pulse causes mistake of z-position reconstruction
 - Increasing the light intensity allows us to select the scintillation pulse that corresponds to the signal
- New detection configuration
 - Wavelength shifted photon is detected at the side
 → large detection area
 - Simulation with 2 types of configuration
 - R&D to establish uniform coating is ongoing

TPB dip coating makes uneven fluorescence

Status of 1000L detector

1000L-size pressure vessel

- Installed at Kamioka observatory (~1000m underground) on May 17, 2023
- Size: $1m\Phi \times 1.5m$, Weight: 1.4 ton
- Inner-fixed feedthrough for saving space for electronics

Gas circulation system

• Under construction in Tohoku univ.

installation of pressure vessel

Gas circulation system

180L prototype detector

R&Ds for 1000L detector

Summary

AXEL experiment

- High pressure xenon gas TPC with unique readout structure ELCC
- Evaluation for 180L prototype and R&Ds for 1000L detector are ongoing

180L prototype

- FWHM Energy resolution @1836keV : $0.73\% \rightarrow 0.60\%$ @ Q-value
- Resolution of data and estimation are consistent
- If all improvement successfully done, expect 0.31% @ Q-value

1000L detector

- New MPPC : twice larger area, removed ceramic package
- High Voltage
 - prevent discharge at ELCC : DLC electrode, additional cover layer
 - Cockcroft-Walton multiplier : 44.6kV in atmosphere, countermeasure for instability
- Scintillation photon detection : R&D is ongoing
- Pressure vessel was installed at Kamioka. Gas system is under construction in Tohoku.