

Scalability and optical enhancement of tracking planes for beyond the ton-scale experiments

The University of Manchester

Workshop on Xenon Detector $0\nu\beta\beta$ searches: Steps towards the kilotonne scale 25-27 October 2023

Imaging capabilities in TPCs

- The principle of TPC inherently allows for imaging
- Imaging plane provides 1D or 2D information while time provides the 3rd coordinate

• QPix: direct charge readout (4mm x 4mm pixels)

• Principle: signal ($\beta\beta$) and backgrounds (β or v) look different

Topological separation with NEXT-White

Cut-based analysis

~20% bkg contamination

Topological separation with NEXT-White

• DNN analysis

NEXT Collaboration, "Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment ", JHEP 01 (2021) 189

Topological separation with NEXT-White

Richardson-Lucy deconvolution analysis

Why aim to keep imaging capabilities

 Powerful visual tool for discovery of few events

Directionality (e.g. solar neutrino rejection) S. Kubota et al., "Enhanced low-energy supernova burst detection in large liquid argon time projection chambers enabled by Q-Pix", Phys. Rev. D 106, 032011 (2022)

Similar conclusions for solar neutrinos in LAr (paper in prep.)

Beyond the Standard Model searches

Cirigliano, V. et al., "Neutrinoless double beta decay in chiral effective field theory: lepton number violation at dimension seven", *JHEP* 12 (2017) 082

Desires for future imaging planes

- Highest possible granularity is desired (higher precision)
- Diffusion limited! (depends on drift length, pressure, gas composition)

Example for 40cm drift

Desires for future imaging planes

Low radioactivity:

✓ Need radiopure substrate✓ Need radiopure cables

✓ Need radiopure SiPMs

NEXT Collaboration, "Radiogenic backgrounds in the NEXT double beta decay experiment *"JHEP* 10 (2019) 51

Provides excellent energy resolution:
 ✓ NEXT demonstrated sub-percent (FWHM) Eres (PMTs)
 ✓ Need to use SiPMs (can they provide same Eres?)

• Allows for detection of S1 light

✓ Need to use SiPMs (already demonstrated with PMTs)

✓ Depends on SiPMs type (dark count rate), coverage, energy, readout electronigs

Potential for future dense tracking plane

Dense plane offers high granularity and high light detection coverage

SiPM Size	Pitch	Coverage	# of SiPMs (ton scale, 2m diam)
1.3 mm x 1.3 mm	2.4 mm	30%	540,979
3 mm x 3 mm	5.5 mm	30%	103,074
6mm x 6mm	11 mm	30 %	25,956

Potential for future dense tracking plane

Imaging capabilities:

• Denser planes give better topology (diffusion limit)

4.5

Work from Helena Almazan (U. Of Manchester)

Energy resolution:

- Preliminary NEXT studies for dense tracking planes have shown that a 30% photocoverage would allow for sub-percent Eres
- Preliminary NEXT-White data analysis for Eres with SiPMs supports the 30% coverage
 Data driven estimations

Potential for future dense tracking plane

Detection of S1:

- Depends on:
 - ✓ Energy of events (e.g. 40keV Kr event produces ~10pes in NEXT PMTs)
 - ✓ Dark rate of SiPMs (vs temperature)
 - ✓ Readout window
- Very challenging for low-energy events like ^{83m}Kr (~40keV)
- Diffusion can be leveraged to find the position

Demonstration of Event Position Reconstruction based on Diffusion in the NEXT-White Detector

Coming soon!

J. Haefner,¹ K.E. Navarro,^{2,*} R. Guenette,³ B.J.P. Jones,² A. Tripathi,² C. Adams,⁴

Summary:

- High granularity imaging plane is desired
- Eres seem achievable with high (30%) coverage SiPMs plane
- S1 detection remains challenging for low energy events
- Electronics readout challenges for very high number of channels
 (*O*(25k-0.5M)) See interesting solution with PDCs from S. Charlebois' talk

Increasing the light collected with metasurfaces

- Arrays of sub-wavelength spaced nanostructure that can manipulate light wavefronts
- Can control phase, amplitude and polarization state of transmitted light
- Optically thin and light
- Low cost, mass production (ebeam lithography or nano-imprints)
- Extremely versatile (which requires dedicated design for different applications)

Kim, K.-H., Jung, G.-H., Lee, S.-J., Park, H.-G. and Park, Q.-H. (2016), Ultrathin Capacitive Metasurfaces for Strong Electric Response. Advanced Optical Materials, 4: 1501-1506. https://doi.org/10.1002/adom.201600146

M. Khorasanineiad & F. Capasso. Science 358. 6367 (2017)

Increasing the light collected with metasurfaces

Combining metalenses to SiPMs (to increase light collection with
 correct for dead-space)

S. Uenoyama et al., ACS Photonics 8 (2021) Hamamatsu

Metasurfaces in xenon

Scintillation light is in VUV

- · Challenges in UV meta optics:
 - Material absorption most materials are absorbing (see green dots in the spectrum below)
 - Subwavelength features fabrication difficulties
 - · Few experimental demonstrations in the literature

A.Martins, Optica Imaging Conference (14/08/2023)

Metasurfaces in xenon

Scintillation light is in VUV •

360 nm

C	380	nm
	• 0	Si

- PB phase Holograms
- Efficiency: 15%

SiO₂/Polymer

Fresnel/metagratings

Metalenses (NA=0.9)

· Efficiency: 13.9%

Advanced Materials, 1802632 (2018)

Adv. Optical Mater. 2023, 2300852.

Nb.O.

355 nm

Nb₂O₅

PB-Phase

Holograms

Efficiency: 79.6%

Laser & Photonics Reviews 13, 1800289 (2019).

- 364, 325 and 266 nm HfO₂
 - PB-Phase
 - Holograms/metalenses
 - (NA=0.6)
 - Efficiency: [55%,60%]

Light: Science & Applications 9. 55 (2020).

- 325 and 248 nm
- ZrO₂
 - PB-Phase
 - Holograms
 - · Effciency: [72% and 48%]

Light Sci Appl 12, 68 (2023).

- 50nm
 - Nanoholes in c-Si
 - Vacuum guiding
 - Metalens (NA=0.05)
 - Efficiency: 5%

Science 380, 59-63 (2023)

A.Martins, Optica Imaging Conference (14/08/2023)

First VUV metalens

Metalens for 175nm

Metalens Parameters

- Focal length=9 mm
- NA = 0.65
- Metalens dimensions: 1.7 mm x 15.39 mm
- Simulated focusing efficiency: 68%

Work led by Augusto Martins (U. Of Manchester)

First VUV metalens

Metalens for 175nm

Metalens Parameters

- Focal length=9 mm
- NA = 0.65
- Metalens dimensions: 1.7 mm × 15.39 mm
- Simulated focusing efficiency: 68%

First VUV metalens

Metalens for 175nm

Metalens Parameters

- Focal length=9 mm
- NA = 0.65
- Metalens dimensions: 1.7 mm × 15.39 mm
- Simulated focusing efficiency: 68%

First demonstration of VUV metaoptics could be useful for future tracking planes

Alternative solution with wavelength shifters

- Much higher quantum efficiencies for SiPMs in visible
- Use of TPB introduces issues (loss of light due to isotropic emission, degradation, dissolution...)
- · Use a metasurface to reshape the TPB emission profile

Alternative solution with wavelength shifters

- Much higher quantum efficiencies for SiPMs in visible
- Use of TPB introduces issues (loss of light due to isotropic emission, degradation, dissolution...)
- Use a metasurface to reshape the TPB emission profile
- Add metalens to increase area!

Summary

- Dense SiPMs plane used in EL-TPC could offer:
 - ✓ High granularity imaging capabilities
 - ✓ Excellent energy resolution
- Need good electronics readout solutions
- Addition of metasurfaces could enhance the amount of light collected

