
Rare Gases Market update

Workshop on Xenon Detector 0vββ Searches: Steps Towards the Kilotonne Scale

Global Markets & Technologies

25/10/2023

This document and the information contained herein is l'Air Liquide S.A. or one of its affiliates' property. The document is confidential business information and may furthermore contain confidential technical information. It is provided to certain employees of the Air Liquide Group for their internal use exclusively in the course of their employment. Any reproduction or disclosure of all or part of this document to third parties is prohibited without the express written consent of an authorized representative within the Air Liquide Group. If you have received this document by mistake, please immediately notify the sender and destroy the original message.

Agenda

- 1. Air Liquide Group & Big Science
- 2. Focus on Xe production
- **3.** Drivers of Xenon production
- 4. Focus on Xe markets

Air Liquide Group <u>& Big Science</u>

© ©Jose Luis Stephens

2022 Key Figures

 \bigcirc \mathbf{OOO} Ē PRESENT IN **MORE THAN** REVENUE **NET PROFIT** INVESTMENT ~66,400 (GROUP SHARE) DECISIONS 75 COUNTRIES €29,9 bn 3.8 MILLION **EMPLOYEES** €2.7bn €4bn **CUSTOMERS & PATIENTS**

Why AL is interested by Big Science

Most of the machines used for Big Science use **superconducting magnets** to create large magnetic fields.

Superconducting magnets work at **temperatures close to absolute zero**, an expertise of Air Liquide.

Air Liquide provides the **helium** used as coolant and the **equipment** able to liquefy helium.

egments cove	red	
Nuclear fusion	Colliders	Cold neutron source
Energy production with no long-lived nuclear waste by using hydrogen.	Used for fundamental research. Size range from few meters to 26Km.	The CNS generates cold neutrons used for matter observation.
Spallation neutron source	Light source	Heavy rare or ion source
'Spallation effect' emits large number of nucleons used for research in biotechnology, pharmacology, new materials.	Generate photons which target the sample for scientific and industrial use of imaging and molecules interactions.	Used for the production of synthetic elements mainly for medical research applications.

Air Liquide & Big Science **Our Contribution**

Nuclear fusion Superconducting magnets.crvopumps

Equipments: Cryoplant 80 K / 20 K /4 K / 2 K/ Cryolines, Valves boxes Isotopes : Deutérium, tritium Cryogenic fluids: LHe, LN2

Particle accelerators & colliders Superconducting magnets, RF cavities,

Equipments: Cryoplant 80 K / 20 K /4 K / 2 K/ Cryolines, Valves boxes Isotopes : Deutérium, tritium Cryogenic fluids: LHe, LN2, Ar

Light Sources

Superconducting magnets, RF Cavities, detectors, undulators, wigglers

Equipments: Cryoplant 2K & 4K, Dilution Refrigerators Cryogenic fluids: LHe, LN2, He3

Cold Neutron Sources

Neutrons moderator, Superconducting magnets, RF Cavities, neutrons detectors

Equipments: Cryoplant 4K & 20K Isotopes: Deutérium Cryogenic fluids: LHe, LN2

detectors

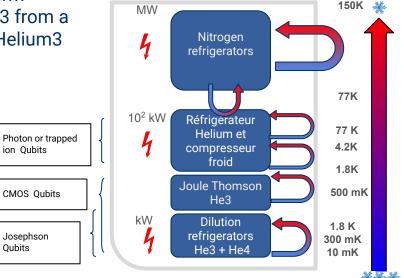
Physics laboratories Experiments for Big Science research

Equipments: Helium Liquefiers Cryogenic fluids: LHe, He3

Quantum computing Superconducting electronic circuits

Equipments: Dilution refrigerators Cryogenic fluids: LHe, He3

Helium3 Anticipating the Quantum Computing boom


Until 2021, Air Liquide was present in deep cooling technologies until 1.8K.

Driven by its ambition to support the Quantum segment development, that needs to get close to 0mK, Air Liquide entered into a long-term Agreement in **2022** with Laurentis Energy Partners to extract He3 from a Candu reactor located in Canada, creating the first non military Helium3 source.

This new source of He3 allows Air Liquide to make He3 a less scarce isotope, enabling the development of quantum computing.

In order to reach high level of purity, the He3 coming from Canada is purified in France using a one of a kind purification plant.

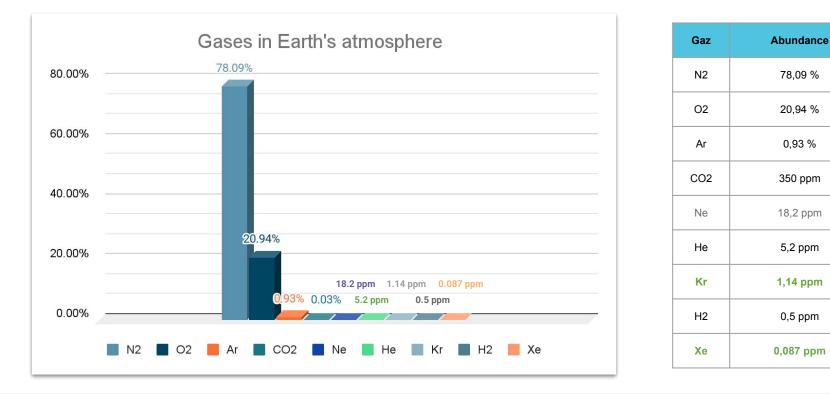
ion Oubits

CMOS Oubits

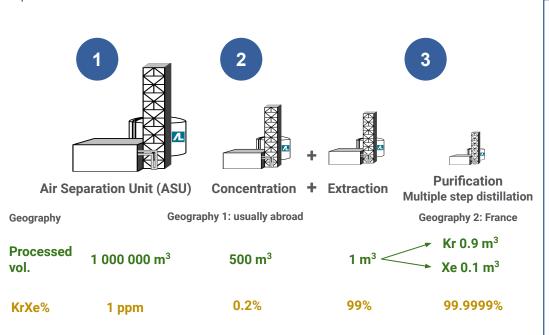
Josephson

Oubits

Focus on Xe production


© ©Jose Luis Stephens

Krypton and Xenon in the Earth's atmosphere

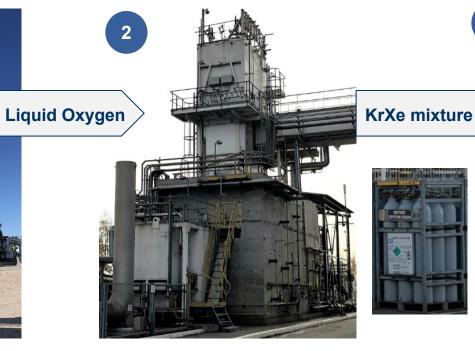

Krypton and Xenon are obtained from air, where it is present in extremely small amounts.

GTHIS DOCUMENT IS CONFIDENTIAL

Kr and Xe extraction from the air requires multiple steps

Key facts:

- KrXe are **by-products** of Oxygen
- Only very large ASUs can justify extraction of Kr and Xe
- ASUs need to be specially designed in order to produce KrXe
- Even if large, the selected ASUs can only produce a small amount of Kr and Xe
- Increasing Kr/Xe capacity on existing ASUs requires significant investments


⇒ Production of Kr and Xe is managed globally in order to maximize reliability of supply

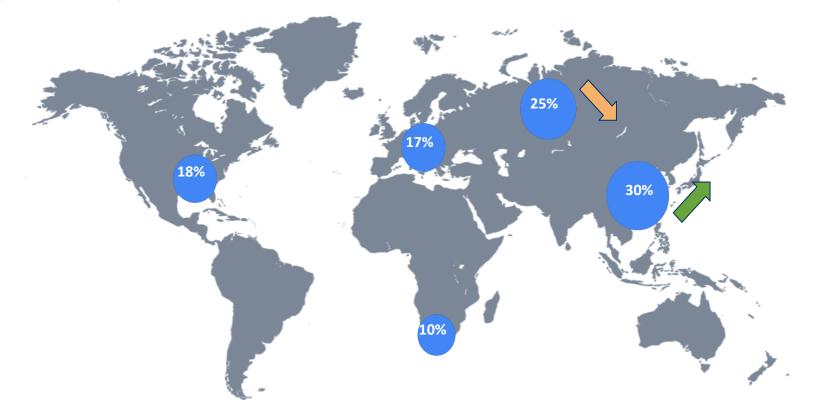
Krypton and Xenon are byproducts of oxygen

AIR SEPARATION UNIT Oxygen production Specially designed for KrXe extraction

KRYPTON-XENON EXTRACTION

Removal of oxygen

PURIFICATION PLANT Separation of Krypton and Xenon


11

THIS DOCUMENT IS CONFIDENTIAL

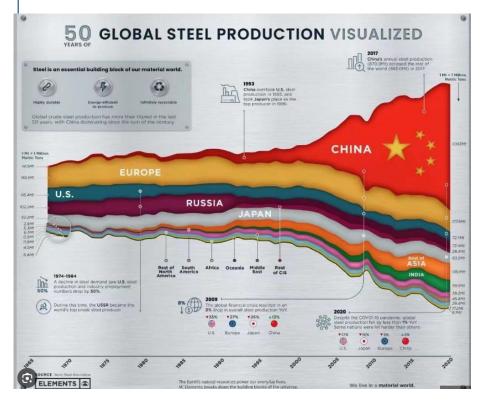
Air Liquide - Global Rare Gases

Global production of KrXe (AL estimation)

Drivers of Xenon production

© ©Jose Luis Stephens

Steel production and KrXe production are connected


To produce KrXe mixture, we need large ASUs and most of the times, the largest ASUS are dedicated to steel production, as it needs significant amount of Oxygen.

Therefore we consider that monitoring the steel production is a good indicator to better appreciate the Xe production capacity worldwide.

Today the steel production is facing several different challenges that can be seen as risks or opportunity for the KrXe production.

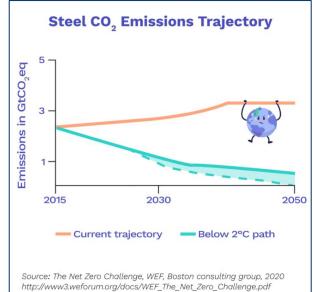
China is leading the global steel production

Over the past years, the mature countries initiated a policy of desindustrialisation that became controversial since the beginning of the war between Ukraine and Russia.

This event showed our dependency towards certain countries and the geopolitical associated risks.

Today China represents 60%* of the steel production while Europe counts for only 10% making our dependency toward China significant.

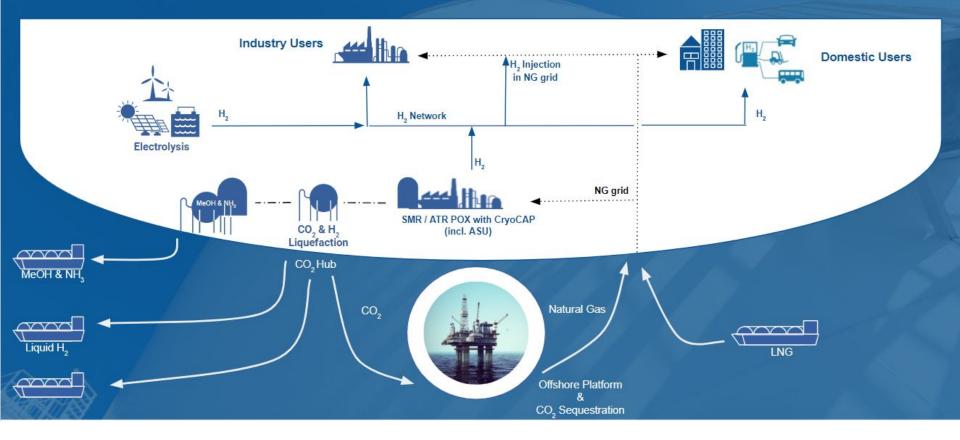
Emerging countries are still far behind and it's difficult to have large ASUS in "non risky countries".


*data from ClimateScience.Org

15

Steel industry and decarbonisation: risk or opportunity?

- Iron and steel industry alone contributed approximately
 25% of global industrial CO₂ emissions in 2018
- In 2019, 240kg of steel were produced for every person on Earth
- For every ton of steel produced, **around 1.8 tonnes of CO**₂ are emitted
- To keep in line with net-zero by 2050 targets, the CO₂ intensity of steel would need to fall an average of 4% annually from now on until 2030.
- The most advanced technologies are :
 - replace O₂ by green-hydrogen made by electrolysis >>> decrease of O₂ consumption so less KrXe produced
 - $\circ~$ replace by blue hydrogen made by CO $_{\scriptscriptstyle 2}$ capture >>> O $_{\scriptscriptstyle 2}$ consumption



Source: Technologies to decarbonize the Steel Industry in Europe et la décarbonisation des entreprises françaises

16

Blue Hydrogen based Energy Transition Projects

THIS DOCUMENT IS CONFIDENTIAL

17

Summary

Xenon production depends on Oxygen needs from CO₂-emitting industries such as steel industry.

Key trends:

- Growing share of China in steel production has an impact on Xenon producing geographies
- Decarbonization of industry will have contrasted impacts on oxygen needs
 - Air Liquide is a partner in six out of seven Hydrogen Hubs announced by the DOE in the U.S.

Xe markets

© ©Jose Luis Stephens

Who are the main Xenon users today?

ELECTRONICS

Xenon and Krypton demands are driven by Electronics

Main use for etching of high density memory chips

SPACE

Used for electric propulsion of satellites allowing important weight reduction

Krypton preferred to Xenon for 'constellations' of low earth orbit satellites

Market organised around projects

LIGHTNING

Gradually replaced by LEDs

Remaining uses for niche applications and replacement (eg for automotive)

Continuous market but very sensitive to price evolution

Cyclical market

20

THIS DOCUMENT IS CONFIDENTIAL

Air Liquide - Global Rare Gases

Xenon market: the global vision

Supply side:

- Russia: assumed to export through non-EU countries;
- New production capacity started mainly in China but at risk on the long term;
- New production capacity opportunities for Energy Transition projects by 2030.

Demand side:

- Lower demand from semiconductor in 2023;
- Xenon purchases from other markets; reduced or delayed due to high prices for 'spot' purchases until mid 2023;
- Expected additional demand from Space and Research in the coming decade.

Xenon and the double beta decay experiments: key figures

AL Estimate of total natural Xe production WW: 60-100t/y

Regular shortage situations

1 kg of ¹³⁶Xe = 12 kg of natural Xe

1000 tons of ¹³⁶Xe means minimum 120 years of the total natural Xe production

Getting ¹³⁶Xe supposes a separation process usually done through centrifugation. To perform this process in a reasonable timeframe, additional investment in centrifugation capacity is required.

And we still have the other uses of Xe...

How to secure Xenon supply (natural Xenon)?

Two main routes:

- 1. 'Open' market:
 - a. Non-guaranteed supply
 - b. Availability and price depending on supply/demand balance

2. Guaranteed supply

- a. dedicated investment and related Xenon production capacity
- b. guaranteed availability & pricing
- c. several years of operation needed in order to pay off the investment
- d. lead time for development and construction of new production capacity

These 2 routes probably need to be combined in order to address the very large requirements

Topics & issues specific to ¹³⁶**Xe:**

- 1. Management of depleted xenon obtained after extraction of Xe136: acceptance by customers (eg semiconductor) & valuation of depleted Xe to define
- 2. Inventory of natural and depleted xenon immobilized for isotopic separation process

Air Liquide

Thank you!

Your contacts:

amandine.marc@airliquide.com

Global Markets & Technologies

This document and the information contained herein is l'Air Liquide S.A. or one of its affiliates' property. The document is confidential business information and may furthermore contain confidential technical information. It is provided to certain employees of the Air Liquide Group for their internal use exclusively in the course of their employment. Any reproduction or disclosure of all or part of this document to third parties is prohibited without the express written consent of an authorized representative within the Air Liquide Group. If you have received this document by mistake, please immediately notify the sender and destroy the original message.