Workshop on Xenon Detector $0 v \beta \beta$ Searches: Steps Towards the Kilotonne Scale
 Krishan Mistry on behalf of the local organization team

October 25 th 2023

WELCOME!

Argonne \triangle UTA
|L Lawrence Livermore
National Laboratory

An ambitious but hopeful workshop!

...or have we all gone crazy?!

- In the next decade (tonne-scale era):
$\rightarrow \quad$ Current $0 v \beta \beta$ tonne scale experiments will obtain critical sensitivity in the inverted mass ordering
\rightarrow Dark matter experiments achieving 10-100 larger sensitivities on the WIMP cross section and heading towards the neutrino fog
- Can we can make a strong physics case for going beyond this scale to kilotonne?
$\rightarrow 0 v \beta \beta$: Towards a half-life of 10^{30} years / meV mass scale
\rightarrow Dark Matter: Reaching the neutrino fog
- No easy feat - there are serious technological challenges to overcome at this scale with prolonged R\&D programmes, collaboration, expense, procurement and careful planning,...

A plethora of benefits

- A large kilotonne-scale detector would be capable of not just $0 v \beta \beta$ decay or WIMP searches, but a plethora of additional physics searches will be possible:
\rightarrow Astrophysical neutrinos
$\rightarrow \quad$ Broader dark matter searches
$\rightarrow \quad$ Additional physics channels such as solar axions
- We would be building the worlds most sensitive xenon detector(s) at a kilotonne scale
- Potential for collaborative work between existing collaborations, similar to consortiums such as XLZD
- Developing new technology:
\rightarrow Acquisition of xenon at scale
$\rightarrow \quad$ New readouts
$\rightarrow \quad$ Detector designs
\rightarrow Barium tagging

Xenon Detectors

- Common detection medium for WIMP dark matter and $0 v \beta \beta$
\rightarrow Most commonly in TPCs, but other technologies e.g. xenonloaded liquid scintillator
- Common objectives and problems to solve:
\rightarrow Xenon acquisition
\rightarrow Calibration
$\rightarrow \quad$ Energy and topological resolution
$\rightarrow \quad$ Large scale
\rightarrow Ultra-low background

$0 \nu \beta \beta$ decay

- Forthcoming experiments are digging into the inverted hierarchy
- Reaching the normal hierarchy region in meV masses will require a kilotonne detector mass and background counts of a fraction of a count per year

Lightest neutrino mass (meV)

- Large theoretical input on matrix element calculations

Dark Matter WIMP

- Current and future experiments continue to carve out the deep parameter space
- Reaching deep into the neutrino floor/fog will require kilotonne scale

This workshop

- Challenges towards the kilotonne scale
\rightarrow Scaling detector components and architecture, calibration of large detectors, radiopurity, xenon acquisition, etc.
- Future charge and light readout
\rightarrow Camera imaging, single electron counting, novel methods, large scale readout
- Novel detector technologies/ideas
- Barium tagging
- Physics program of a kilotonne detector
$\rightarrow \quad$ Additional physics searches/programmes, theoretical perspectives and latest calculations

Workshop Outcomes

- The workshop presentations will be summarized in a single conference proceedings (short document)
\rightarrow Organizers will start the document based on summaries taken during the workshop
$\rightarrow \quad$ Workshop attendees will also be sent this document to review and contribute before a deadline which will be advertised
\rightarrow Contributions and author-list is opt-in
- We hope this workshop will be productive and facilitate fruitful discussions, new ideas and build new connections

Session Guidelines

- Each session will be steered by the session chairs
- Please upload your slides to the indico before the session begins, including remote talks
- We have a full agenda!
$\rightarrow \quad$ The session chair will notify you when there is a couple minutes remaining in your talk
- All questions will be taken at the end of the talk
\rightarrow Plenty of time allocated at the end of each talk
\rightarrow Zoom and slack channel will also be checked
\rightarrow Discussion sessions can be used for more extensive discussions

Organization Team

Organizing committee:

- Leslie Rogers (Argonne National Lab)
- Krishan Mistry (University of Texas, Arlington)
- Brian Lenardo (SLAC National Accelerator Laboratory)
- David Nygren (University of Texas, Arlington)
- Mike Heffner (Lawrence Livermore National Laboratory)

Scientific advisory committee:

- Laura Baudis (University of Zurich)
- Thomas Brunner (McGill University)

Thanks for listening!

- Jon Engel (University of North Carolina, Chapel Hill)
- Giorgio Gratta (Stanford University)
- Roxanne Guenette (University of Manchester)
- Atsuko Ichikawa (Tohoku University)
- Kunio Inoue (Tohoku University)
- Xiangdong Ji (University of Maryland)
- Kyle Leach (Colorado School of Mines)
- Justo Martin-Albo (IFIC)
- David Moore (Yale University)

