Stress-testing the Standard Model using the Effective Field Theory formalism

P5 town hall at SLAC Saptaparna Bhattacharya Northwestern University, Humboldt Fellow

inelastic cross account (\mathbb{D}) magnitud when 0 int \mathbf{O} Ď Ō taken ဟ θΓ magni ord are 0 Of sections Spans ers Ō 20 Spans

CMS preliminary				
×	w	7 TeV	JHEP 10 (2011) 132	
vea	W	8 TeV	PRL 112 (2014) 191802	
trov	vv Z	13 lev 7 TeV	SMP-15-004 IHEP 10 (2011) 132	
ect	Z	8 TeV	PRL 112 (2014) 191802	
ш	z	13 TeV	SMP-15-011	
di-Boson	Wγ	7 TeV	PRD 89 (2014) 092005	
	Wγ	13 TeV	PRL 126 252002 (2021)	
	Ζγ Ζν	7 TeV	PRD 89 (2014) 092005	
	ww	7 TeV	EPJC 73 (2013) 2610	
	ww	8 TeV	EPJC 76 (2016) 401	
	WW	13 TeV	PRD 102 092001 (2020)	
	WZ WZ	7 iev 8 TeV	EPJC 77 (2017) 236 EPIC 77 (2017) 236	
	WZ	13 TeV	Submitted to JHEP	
	ZZ	7 TeV	JHEP 01 (2013) 063	
	ZZ ZZ	8 lev 13 TeV	PLB 740 (2015) 250 EPIC 81 (2021) 200	
		13 TeV 13 TeV	PRL 125 151802 (2020) PRL 125 151802 (2020)	
	wwz	13 TeV	PRL 125 151802 (2020)	
E	WZZ	13 TeV	PRL 125 151802 (2020)	
Bos	ZZZ	13 TeV	PRL 125 151802 (2020)	$\sigma(ZZZ) < \sigma(ZZZ)$
tri-	Wγγ	8 TeV	JHEP 10 (2017) 072	$\sigma(W\gamma\gamma) = 4.9 \text{ fb}$
	Wγγ	13 TeV	JHEP 10 (2021) 174	$\sigma(W\gamma\gamma) = 14 \text{ fb}$
	Ζγγ	8 TeV	JHEP 10 (2017) 072	$\sigma(Z\gamma\gamma) = 13 \text{ fb}$
	Ζγγ	13 Iev	JHEP 10 (2021) 174	$\sigma(2\gamma\gamma) = 5.4 \text{ fb}$
	VBF W	8 TeV	JHEP 11 (2016) 147	
	VBF W VBF Z	7 TeV	EPJC 80 (2020) 43 IHEP 10 (2013) 101	σ (VBF Z
	VBF Z	8 TeV	EPJC 75 (2015) 66	
	VBF Z	13 TeV	EPJC 78 (2018) 589	
'BS	Evv vvv ex.γγ→W	13 lev W8 TeV	IHEP 08 (2016) 119	$\sigma(\text{ex}, \gamma\gamma \rightarrow \text{WW}) = 22 \text{ fb}$
VBF and V	EW qqWγ	8 TeV	JHEP 06 (2017) 106	$\sigma(EW qqW\gamma) = 11 fb$
	EW qqWγ	13 TeV	SMP-21-011	$\sigma(\text{EW } qqW\gamma) = 19 \text{ fb}$
	EW os WW EW ss WW	/ 13 TeV / 8 TeV	Submitted to PLB PRI 114 051801 (2015)	$\sigma(\text{EW os WW}) = 10 \text{ fb}$
	EW ss WW	13 TeV	PRL 120 081801 (2018)	σ (EW ss WW) = 4 fb
	EW qqZγ	8 TeV	PLB 770 (2017) 380	$\sigma(EW qq Z \gamma) = 1.9 fb$
	EW qqZy EW qaWZ	13 lev 13 TeV	PRD 104 072001 (2021) PLB 809 (2020) 135710	$\sigma(\text{EW } \text{qq}\text{Z}\gamma) = 5.2 \text{ fb}$
	EW qqZZ	13 TeV	PLB 812 (2020) 135992	$\sigma(\text{EW qqZZ}) = 0.33 \text{ fb}$
	tt	7 TeV	JHEP 08 (2016) 029	
	tt	8 TeV	JHEP 08 (2016) 029	
	tt ++	13 TeV	Accepted by PRD	
	t_{t-ch}	7 TeV	JHEP 12 (2012) 035	
	t _{t – ch}	8 TeV	JHEP 06 (2014) 090	
	t_{t-ch}	13 TeV	PLB 72 (2017) 752	
	tW	8 TeV	PRL 110 (2013) 022003 PRL 112 (2014) 231802	
	tW	13 TeV	JHEP 10 (2018) 117	
d.	t _{s — ch}	8 TeV	JHEP 09 (2016) 027	
	ttγ	13 TeV	Submitted to JHEP	
	tZq	8 TeV	JHEP 07 (2017) 003	
	tZq ++7	13 TeV 7 TeV	Submitted to JHEP	
	ttZ	8 TeV	JHEP 01 (2016) 096	$-\sigma(t)$
	ttZ	13 TeV	JHEP 03 (2020) 056	
	ιγ ttW	13 lev 8 TeV	PRL 121 221802 (2018) IHEP 01 (2016) 096	
	ttW	13 TeV	TOP-21-011	
	tttt	13 TeV	EPJC 80 (2020) 75	$\sigma(\text{tttt}) = 13 \text{ fb}$
Higgs	ggH	7 TeV	EPJC 75 (2015) 212	
	ggH	8 TeV	EPJC 75 (2015) 212	
	ggн VBF ааН	⊥3 IeV 7 TeV	Nature 607 60-68 (2022) EPJC 75 (2015) 212	
	VBF qqH	8 TeV	EPJC 75 (2015) 212	
	VBF qqH	13 TeV	Nature 607 60-68 (2022)	
	VH WH	8 TeV 13 TeV	EPJC 75 (2015) 212 Nature 607 60-68 (2022)	
	ZH	13 TeV	Nature 607 60-68 (2022)	
	ttH	8 TeV	EPJC 75 (2015) 212	
	ttH tH	13 TeV 13 TeV	Nature 607 60-68 (2022) Nature 607 60-68 (2022)	
	НН	13 TeV	Nature 607 60-68 (2022)	σ(HH) < 1.1e+C
			1 0	e-01 1.0e+01
Me	easured cross	s sections	and exclusion limits at 9	5% C.L. Inner colored bars statistical uncertainty, outer narrow bars statistica

See here for all cross section summary plots

cal+systematic uncertainty Light colored bars: 7 TeV, Medium: 8 TeV, Dark: 13 TeV, Darkest: 13.6 TeV, Black bars: theory prediction

Overview of CMS cross section results

September 2022

 σ [fb]

Potential nature of new physics

Look for appearance of new physics indirectly in interactions

Effective Field Theory Framework

$\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{C_i}{\Lambda^2} \mathcal{O}_i -$

- Extend Standard Model Lagrangian in inverse powers of the scale of new physics Operators of dimension-6 and operators of dimension-8 Constraints computed on multiplicative terms associated with each of these
- operators -> Wilson Coefficients

Using all measurements and interpreting in the **Effective Field Theory Framework**

Combine constraints from various sectors of Standard Model

Legacy of the LHC

- The Standard Model Effective Field Theory formalism is a systematic framework to characterize the potential nature of New Physics
- important legacy of the LHC
- Can be combined with constraints from electroweak precision measurements (à la LEP)
- Provide important input for future experiments
- language of the Effective Field Theory
- A successful partnership with the particle theory community is crucial from my (an experimentalist's) point of view

• Constraints on the Wilson Coefficients from top, electroweak and jet measurements will be an

• It is my request to the P5 committee to retain focus on precision measurements which then by extension can be used to describe deviations from Standard Model expectations in the

