XCC: XFEL Compton yy Collider Higgs Factory

T. Barklow, A. Schwartzman, S. Tantawi, G. White, SLAC, May 4, 2023

- Staging an e^+e^- collider with an initial $\gamma\gamma$ collider at the Higgs resonance is not a new idea. Such a suggestion by H. Sugawara in 2009 for the ILC was rejected in part due to a weak physics case.
- With an X-ray laser in place of an optical laser, the physics case for a 1st stage $\gamma\gamma$ collider Higgs factory is strengthened considerably. The optimum 2nd stage could again be a $\gamma\gamma$ collider, at $\sqrt{s}=380$ GeV to produce $\gamma\gamma \rightarrow H^* \rightarrow HH$.
- The XCC could begin operation on an earlier time scale than an e⁺e⁻ Higgs factory due to its lower cost and smaller footprint.

The XCC is very different from previous $\gamma\gamma$ collider concepts

2

ILC/C³ vs. XCC Physics Comparison

Stage I & II P	arameter	'S	<i>κ</i> f	Stage I, 10	years BR _{BSM} = 0			Stage I+II, 20 years Model Independent EFT	
Colliding Particles	$\begin{vmatrix} \text{ILC/C}^3 \\ e^+e^- \end{vmatrix}$	$\begin{array}{c} \text{XCC} \\ \gamma \gamma \end{array}$	coupling a	$\begin{vmatrix} \text{HL-LHC}^{\dagger} \\ \Delta a (\%) \end{vmatrix}$	ILC/C ³ $\Delta a (\%)$	XCC Δa (%)	coupling <i>a</i>	ILC/C ³ $\Delta a (\%)$	XCC Δa (%)
Stage I: \sqrt{s} (GeV) Luminosity (fb ⁻¹)	250 2000	125 460	HZZ HWW	$\begin{array}{ c c }\hline 2.4\\ 2.6\end{array}$	0.46 0.44	0.83	HZZ HWW Hbb	0.38 0.37 0.60	0.94 0.94 0.95
Beam Power (MW) Run Time (yr) # Single Higgs	$5.3 / 4.0 \\ 10 \\ 0.5 \times 10^{6}$	4.0 10 1.3×10^{6}	Hbb $H au au$	6.0 2.8	0.83 0.98	0.85 0.89	H au au Hgg Hcc	0.77 0.96	0.99 1.2 1.2
Stage II: \sqrt{s} (GeV) Luminosity (fb ⁻¹)	550 4000 11/4.9 10	380 4900	Hgg Hcc	4.0	1.6 1.8	1.1 1.2	$ H\gamma\gamma \\ H\gamma Z \\ Hyy $	1.2 1.0 4.0 2.8	0.44
Beam Power (MW) Run Time (yr)		4.9 10	$H\gamma\gamma$ $H\gamma Z$	2.9	1.1	0.10	Ημ Htt HHH	3.8 2.8 20	4.6 14*
 # Single Higgs (1+11) # Double Higgs # tt 	$1.5 \times 10^{\circ}$ 840 2.0×10^{6}	1.3×10^{6} 1800 2.9×10^{6}	$\frac{\Gamma \mu \mu}{\Gamma_{\text{tot}}}$ [†] S1 from Tab	0.7 5 le 36 in arXiv:1	4.0 1.6 902.00134 [h	1.7 hep-ph]	$\Gamma_{ m tot} \ \Gamma_{ m inv}{}^{\dagger} \ \Gamma_{ m other}{}^{\dagger}$	1.6 0.32 1.3	2.4 _ 1.5

[†] 95% C.L. limit

3

Technical Challenges

- e^- accelerator with 70–120 MV/m (common with C³ e^+e^- collider)
- Focusing of round e^- beams to $\sigma_{x,v} = 5.5$ nm
- Focusing of 1 keV γ XFEL with 700 mJ/pulse to 70 nm FWHM waist
- XFEL and e^- beamline layouts around the IP
- Timing stability of the XFEL laser beam and e^- beam at Compton IP.

P5 Ask

- Support for 5 to 6 FTE's for a few years to write a CDR.
- Due to common accelerator technology, we propose that the XCC CDR be incorporated into the C³ CDR as a 2nd collider configuration option, with the choice between e^+e^- and $\gamma\gamma$ to be made at a later date (much like a CDR might contain several site options).

XCC vs. FCC-hh

