Expanded Accelerator Options for Forefront New Physics Searches,

Janet Conrad, SLAC P5 Town Hall, May 4, 2023

Request: Recommend a thriving program of small accelerator-based experiments located beyond FNAL and CERN

Opening otherwise unreachable new physics:

By exploiting accelerators with different capabilities, these experiments can access BSM physics that is entirely new, Pointing the way toward new ideas for the "mother laboratories" in the future.

Strengthening connections to our near-neighbor communities:

Building allies in the NP, BES, NNSA and broader NSF communities in the US and abroad!

Leveraging opportunity:

Compared to most "small" experiments, these experiments receive a high fraction of non-US-HEP support

Examples:	Experiment	Unique Qualities of Accelerator/Complex	Allies
-	ССМ	Fast pulse (~100 ns now; 30 ns future) 800 MeV protons, ample shielded space w/i 20 m	US NNSA
	Coherent	World-leading power for 800 MeV protons on target (1.4 MW and rising)	US BES
	IsoDAR	Underground source producing more than a mole of neutrons capturing on ⁷ Li	Korea IBS
	JSNS2	3 GeV protons on target allowing Kaon-Decay-at-Rest	Japan MLF
	LDMX	Uses an electron beam!	US BES

Why a special shout-out from P5?

Accelerator-based HEP has struggled with cross-agency collaboration and foreign-footprint collaboration beyond CERN, despite the great value of these partnerships.

CCM (Coherent Captain Mills): A Great Example of P5 influence-for-good

2014 P5 included language with general support for small experiments --- this led to DOE's DMNI program. CCM was one of the first DMNI experiments funded!

CCM, at LUJAN (LANL) uses a pulsed 800 MeV proton source to search for exotic particle produced in the target.

- *Quick!* 2018 proposed ; 2019 CCM120 (protoype) run; 2020 ~ DMNI funding; 2021 CCM200 engineering run; 2022-26 CCM200 running;
- *Physics-forward!* Since 2021, 1 PRL + 2 PRD + 1 thesis so far! Expect 3 more papers and 1 more thesis by autumn! New reach: Leptophobic DM; Portal DM; QCD Axion; ALPS; mirror neutrons, for more see NF03 study...

Leveraged! LANL (NNSA/LDRD), DMNI (DOE Cosmic Frontier), DOE Intensity Frontier, and NSF + international

Lujan Center has floorspace for more;

this is the largest, light-only LAr detector

IsoDAR: Outside-the-box accelerators \rightarrow Outside-the-box BSM searches

What's unique? Producing a mole of \overline{v}_e next to a multi-kt detector \rightarrow Worlds largest IBD and ES interaction samples!

InBeyond-Standard-HEP accelerators move Beyond-Standard-Model physics forward.Conclusion:Please assure these opportunities are part of the US mission through comment in your report.