Energy consumption & carbon footprint of proposed Higgs factories

<u>J. Gonski</u>, on behalf of US FCC

More information in arxiv:2208.10466, submitted to Snowmass'21 proceedings

- It is important to send the message that scientists are sensitive to global warming & environmental health in our collider choice, design, & optimization.
- We aim to do the most science with the least energy consumption & minimum environmental impact.

Coupling Precision from a global EFT fit

Higgs Coupling	ZZ/WW	bb	сс	gg	au au
Without long. polarization $(\%)$ With long. polarization $(\%)$	$\begin{array}{c} 0.41 \\ 0.36 \end{array}$	$\begin{array}{c} 0.72 \\ 0.71 \end{array}$	$\begin{array}{c} 1.2 \\ 1.3 \end{array}$	1.1 1.2	$0.81 \\ 0.79$

Numbers extrapolated from Table XIX of arXiv:1903.01629

 \rightarrow The physics outcome of an e⁺e⁻ Higgs factory depends on the number of H events produced (left: coupling precision with 10⁶ ZH events)

Impact on energy consumption during operation

Higgs factory \sqrt{s} (GeV)	CLIC 380	$\begin{array}{c} \mathrm{ILC} \\ \mathrm{250} \end{array}$	${ m C}^3 \ 250$	$\begin{array}{c} \text{CEPC} \\ 240 \end{array}$	FCC-ee 240
Instantaneous power P (MW)	110	140	150	340	290
Annual collision time $T (10^7 \text{ s})$	1.20	1.60	1.60	1.30	1.08
Operational efficiency ϵ (%)	75	75	75	60	75
Annual energy consumption E (TWh)	0.4	0.7	0.8	1.6	1.0

(see also <u>FACT2022-FRXAS0101</u>,

The Snowmass'21 Implementation Task Force collected the power (in MW) of each Higgs factory (<u>arXiv:2208.06030</u>) ...

... from which the annual energy consumption during operation as a Higgs factory can be inferred consistently (<u>arXiv:2208.10466</u>)

Impact on energy consumption during operation

Higgs factory \sqrt{s} (GeV)	CLIC 380	$\begin{array}{c} \mathrm{ILC} \\ \mathrm{250} \end{array}$	${ m C}^3 \ 250$	$\begin{array}{c} \text{CEPC} \\ 240 \end{array}$	FCC-ee 240
Instantaneous power P (MW)	110	140	150	340	290
Annual collision time $T (10^7 \text{ s})$	1.20	1.60	1.60	1.30	1.08
Operational efficiency ϵ (%)	75	75	75	60	75
Annual energy consumption E (TWh)	0.4	0.7	0.8	1.6	1.0

(see also <u>FACT2022-FRXAS0101</u>,

The Snowmass'21 Implementation Task Force collected the power (in MW) of each Higgs factory (<u>arXiv:2208.06030</u>) ...

... from which the annual energy consumption during operation as a Higgs factory can be inferred consistently (arXiv:2208.10466)

ightarrow Normalizing the energy consumption by the # Higgs produced shows the circular colliders are lowest

Impact on carbon footprint during operation

If all Higgs factories were to start TODAY, CERN (CLIC, FCC-ee) would benefit already from an almost carbon-free electricity

4

Conclusions

- → A Higgs factory is an attractive option for the next collider, and many strong proposals exist (linear & circular)
 - FCCee, with 4 interaction points and high luminosity, delivers **more Higgs events faster** than other options
 - Linear colliders have **lower annual power consumption**, but FCCee has the **lowest power per Higgs**
 - How could we incorporate a harmonized physics outcome into energy considerations?
 - Hosting FCCee at CERN benefits from **cleaner/lower carbon** sources of power (if started today)
 - How can we best predict carbon neutrality of power and comprehensively account for all sources?

Accounting for the physics output of the collider & carbon intensity reveals there are multiple ways to evaluate the "best" candidate from an energy perspective: we all benefit from a harmonized & comprehensive view across communities!

Additional remarks

- The FCC-ee realistic annual running time is about six months, to be compared to the optimistic nine months for ILC
- Less physics days every year also give additional flexibility
 - To operate the collider only when electricity is available (priority always given to the population)
 - To operate the collider only when electricity is carbon-free
- The dissipated heat and the geothermal energy in the tunnel can be used for domestic uses. For the latter, the longer and deeper the tunnel, the better!
- Today, the construction of the FCC tunnel has a carbon footprint that corresponds to three years of running
 - Similarly to solar panels or electric vehicles, the investment pays off after three years in terms of CO₂ footprint
 - The FCC tunnel is also fully recyclable, as it may be used again by FCC-hh for several decades, and maybe used again for other options later on (muon collider?)
 - Today, the tunnel carbon footprint is dominated by concrete production: cleaner production methods are being developed as we speak, and could be available by the time of construction
 - A complete estimate of the FCC carbon footprint will be available at the end of the feasibility study
- CERN (and other candidate hosts) will do a lot in the direction of reducing energy consumption and carbon footprint
 - For example: Improve the lattice towards larger specific luminosity; Develop energy-efficient technologies (RF power sources, etc.); Generalise dissipated heat and geothermal energy recovery; Maximise synergies with carbon-free energy production; Develop new ideas that transcend the limits of silicon for data storage and analysis; ...
 - All these efforts are highly incentive of innovative developments
 - These developments will serve the society at large