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The standard argument for quantum computing is that it 
outperforms a classical computer exponentially
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The important message is that there are transformational 
problems in HEP for which QC outperforms CC
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These problems exist in many areas of HEP
collider physics, neutrino physics, cosmology, 
early universe physics, quantum gravity etc

See for example
CWB, Davoudi et. al. PRX Quantum 4, 027001
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Quantum Algorithms for Quantum
Field Theories
Stephen P. Jordan,1* Keith S. M. Lee,2 John Preskill3

Quantum field theory reconciles quantum mechanics and special relativity, and plays a central
role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering
probabilities in a massive quantum field theory with quartic self-interactions (f4 theory) in
spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles,
their energy, and the desired precision, and applies at both weak and strong coupling. In the
strong-coupling and high-precision regimes, our quantum algorithm achieves exponential
speedup over the fastest known classical algorithm.

Thequestion whether quantum field theories
can be efficiently simulated by quantum
computers was first posed by Feynman

three decades ago when he introduced the notion
of quantum computers (1). Since then, efficient
quantum algorithms for simulating the dynamics
of quantum many-body systems have been
developed theoretically (2–4) and demonstrated
experimentally (5–7). Quantum field theory, which
applies quantum mechanics to functions of space
and time, presents additional technical challenges,
because the number of degrees of freedom per
unit volume is formally infinite.

We show that quantum computers can ef-
ficiently calculate scattering probabilities in
continuum f4 theory to an arbitrary degree of pre-
cision. We have chosen f4 theory, a scalar theory
with quartic self-interactions, because it is among
the simplest interacting quantum field theories
and thus illustrates essential issues without un-
necessary complications. Our work introduces
several new techniques, including creation of the
initial state by a generalization of adiabatic state
preparation and the use of effective field theory
to analyze spatial discretization errors.

In complexity theory, the efficiency of an al-
gorithm is judged by how its computational de-
mands scale with the problem size or some other
quantity associated with the problem’s intrinsic
difficulty. An algorithm with polynomial-time
asymptotic scaling is considered to be feasible,
whereas one with superpolynomial (typically, ex-
ponential) scaling is considered infeasible. This
classification has proved to be a useful guide in
practice.

Traditional calculations of quantum field
theory scattering amplitudes rely on perturba-

tion theory—namely, a series expansion in
powers of the coupling (the coefficient of the
interaction term), which is taken to be small.
A powerful and intuitive way of organizing
this perturbative expansion is through Feyn-
man diagrams, in which the number of loops
is associated with the power of the coupling.
A reasonable measure of the computational com-
plexity of perturbative calculations is therefore
the number of Feynman diagrams, which is de-
termined by combinatorics and grows factorial-
ly with the number of loops and the number of
external particles.

If the coupling constant is insufficiently
small, the perturbation series does not yield cor-
rect results. In f4 theory, for D = 2, 3 spacetime
dimensions, by increasing the coupling l0, one
eventually reaches a quantum phase transition at
some critical coupling lc (8–10). In the parameter
space near this phase transition, perturbative
methods become unreliable; this region is re-
ferred to as the strong-coupling regime. There
are then no known feasible classical methods
for calculating scattering amplitudes, although
lattice field theory can be used to obtain static
quantities such as mass ratios. Even at weak
coupling, the perturbation series is not conver-
gent, although it is asymptotic (11–13). Includ-
ing higher-order contributions beyond a certain
point makes the approximation worse. There is
thus a maximum possible precision achievable
perturbatively.

We simulate a process in which initially well-
separated massive particles with well-defined
momenta scatter off each other. The input to our
algorithm is a list of the momenta of the in-
coming particles, and the output is a list of the
momenta of the outgoing particles produced
by the physical scattering process. At relativistic
energies, the number of outgoing particles may
differ from the number of incoming particles.
In accordance with quantum mechanics, the in-
coming momenta do not uniquely determine
the outgoing momenta, but rather a probability
distribution over possible outcomes. Upon re-
peated runs, our quantum algorithm samples

from this distribution. The asymptotic scaling
of the algorithm is given in Eq. 9 and Table 1. The
simulated scattering processes closely match ex-
periments in particle accelerators, which are the
standard tools to probe quantum field-theoretical
effects.

The issue of gauge symmetries in quantum
simulation of lattice field theories has been
addressed in (14). There is an extensive literature
on analog simulation of interacting quantum field
theories using ultracold atoms (15–26), trapped
ions (27, 28), and Josephson-junction arrays (29).
Much work has also been done on analog sim-
ulation of special-relativistic quantum mechani-
cal effects such as zitterbewegung and the Klein
paradox, as well as general-relativistic quantum
effects such as Hawking radiation [for recent
reviews, see (30, 31)]. Our work, in contrast to
these studies, addresses digital quantum sim-
ulation, with explicit consideration of convergence
to the continuum limit and efficient preparation of
wave packet states for the computation of dy-
namical quantities such as scattering probabil-
ities. Our analysis includes error estimates of all
parts of our algorithm.

Representing fields with qubits. Although
quantum field theory is typically expressed in
terms of Lagrangians and within the interaction
picture, our algorithm is more naturally described
in the formalism of Hamiltonians and within
the Schrödinger picture. We start by defining a
lattice f4 theory and subsequently address con-
vergence to the continuum theory. (In D = 4,
the continuum limit is believed to be the free the-
ory. Nonetheless, because the coupling shrinks
only logarithmically, scattering processes for
particles with small momenta in lattice units
are interesting to compute.) Let W ¼ aZd

%L, that
is, an %L" :::" %L lattice in d = D − 1 spatial
dimensions with periodic boundary conditions
and lattice spacing a. The number of lattice
sites is V ¼ %Ld . For each x ∈ Ω, let f(x) be a
continuous, real degree of freedom—interpreted
as the field at x—and let p(x) be the correspond-
ing canonically conjugate variable. In canonical
quantization, these degrees of freedom are pro-
moted to Hermitian operators with the commu-
tation relation

½f(x), p(y)$ ¼ ia−ddx,y1 ð1Þ

We use units with ħ = c = 1. f4 theory on the
lattice Ω is defined by the Hamiltonian

H ¼ ∑
x∈W

ad
1
2
p(x)2 þ 1

2
(∇af)2(x) þ

!

1
2
m2

0f(x)
2 þ l0

4!
f(x)4

"
ð2Þ

where ∇af denotes a discretized derivative (that
is, a finite-difference operator) and m0 is the
particle mass of the corresponding noninteract-
ing (l0 = 0) theory.
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There are many questions in particle physics that we 
would love to have numerical answers to

How do particles 

hadronize in 

particle colliders?

What are the values of 

non-perturbative 
objects?

What happens to field 

theories at large 

temperatures / 

chemical potentialSimulations of QFTs 
dual to weakly coupled 
gravitational theories
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The QIS community is rapidly advancing to build large 
quantum systems in laboratory setting

Many different 

approaches to 

build such systems

(neutral atoms, 

trapped ions, 

superconducting 

circuits, …)

Enough control to over 

to program quantum 
systems

Key problems where 

quantum computers 

outperform classical 

computersLarge community of 
scientists used to 
simulating field 

theories on these devices
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Embracing the QIS within HEP has huge advantages for 
both fields

QIS gives new computational tool for 
numerical control of key questions in HEP

Provides important benchmark applications
and high profile scientific targets to QIS

Allows scientists from both fields to learn about QFTs in 
regimes that have not previously been tackled
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One of things one can compute on quantum computers is 
soft function describing color reconnection at colliders
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