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IntroductionIntroduction

♦ The Calibration WG has been busy calibrating the detector 
since the beginning of cold commissioning at ICARUS
• Drift velocity measurement

• Tuning of electronics/field response

• TPC energy scale (gain, recombination) and non-uniformities

• Measurements of diffusion (D
T
, D

L
)

• E field distortions, including space charge effects (SCE)

• PMT calibrations (gain, timing, variations in light yield)

• CRT calibrations (gain, timing)

♦ How well can we address these items?  That is, what is the 
level of residual data/MC disagreement we might expect?

♦ The answer to this question is very relevant not just for 
ICARUS analyses, but the entire SBN physics program

Almost Finalized

Properly Resourced

Not Properly Resourced
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General ApproachGeneral Approach
♦ Two important goals of detector calibration:

• (1) Improve simulation to minimize data/MC bias
– Example:  modify TPC field response in MC to better match data

• (2) Maximize performance of detector measurements
– Example:  change TPC deconvolution kernel to use measured field 

response in order to improve measured charge resolution

♦ In general, we should be more concerned with making a 
wrong measurement than making our “best” measurement
• This prioritizes (1) over (2); start with (1), pursue (2) in longer term

♦ Both (1) and (2) are important to physics analyses:
• More work on (1)  smaller detector systematics (can “cover” bias)→

• More work on (2)  high-level measurements more precise→

♦ Work on (1) until detector systematics are subleading 
contribution, work on (2) until negligible to sensitivities
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Logistics and PrioritiesLogistics and Priorities

♦ First, let’s consider logistical complications, and set our 
priorities accordingly

♦ Big bottleneck for experiment is how fast we can pull data 
from tape for processing
• Want to do this as few times as possible

• Cost is much higher if done later on in experiment (more data)

♦ Correspondingly, want to redo “stage-0” processing as 
infrequently as possible (output is more manageable to store) 

♦ This prioritizes calibrations that would require reprocessing 
data through stage-0:
• TPC electronics/field response tuning (impacts deconvolution)

• PMT timing calibration (applied prior to creating OpFlash objects)

♦ Can store data on disk until this summer – handle by then!
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TPC Signal Response TuningTPC Signal Response Tuning

♦ Brief summary of methodology:
• Produce average signal waveforms in data, MC

• Take toy MC model of signal response and use to extract amount 
of “smearing” due to noise as function of track angle

• Fit same toy MC model to data, modifying electronics/field 
response to obtain data/MC agreement, including noise smearing

• Produce MC sample using tuned signal response for validation

♦ See recent talk by Gray Putnam for more details

Simulation Data

G. Putnam

https://sbn-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=30897&filename=calib.pdf
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Response Tuning ResultsResponse Tuning Results

♦ Much improvement in modeling of signal response after 
tuning – residual disagreement (particularly Induction 1) 
currently being addressed

Before
Tuning

Before
Tuning

Before
Tuning

After
Tuning

After
Tuning

After
Tuning



7

TPC Gain/Noise TuningTPC Gain/Noise Tuning

♦ Use known stopping muon dE/dx vs. residual range curve in 
order to tune TPC electronics gain – see here
• Use ArgoNeuT recombination measurement as constraint (pull 

term) in fit, with TPC gain separately floating per TPC

• Can repeat for all three planes (see next slides)

♦ Noise model in MC simulation tuned to match data
• Close but likely imperfect – eventually replace with data overlays

G. Putnam

https://link.springer.com/article/10.1140/epjc/s10052-023-11610-y
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TPC Gain/Noise TuningTPC Gain/Noise Tuning

♦ Use known stopping muon dE/dx vs. residual range curve in 
order to tune TPC electronics gain – see here
• Use ArgoNeuT recombination measurement as constraint (pull 

term) in fit, with TPC gain separately floating per TPC

• Can repeat for all three planes (see next slides)

♦ Noise model in MC simulation tuned to match data
• Close but likely imperfect – eventually replace with data overlays

J. Mueller

https://link.springer.com/article/10.1140/epjc/s10052-023-11610-y
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Gain Tuning ResultsGain Tuning Results

♦ Use cosmic muon tracks to adjust gain per-plane

♦ Data/MC agree well on Ind2/Col; Ind1 data/MC discrepancies 
from not modeling TPC response non-uniformity in MC

Data Data Data

MC MC MC
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Gain Tuning ResultsGain Tuning Results

Data Data Data

Tuned
MC

Tuned
MC

Tuned
MC

♦ Use cosmic muon tracks to adjust gain per-plane

♦ Data/MC agree well on Ind2/Col; Ind1 data/MC discrepancies 
from not modeling TPC response non-uniformity in MC
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TPC Response Non-uniformityTPC Response Non-uniformity

♦ TPC signal response inhomogeneities observed by means of 
studying variations in extracted charge scale (dQ/dx MPV)
• Range of variations across each TPC:  15-20%

• See previous study by G. Putnam

♦ Also TPC signal response waveforms show data/MC 
disagreement, likely another manifestation of same issue
• See previous study by M. Mooney, previous slides

♦ Can correct inhomogeneities in charge scale after 3D hit 
reconstruction, include any signal shape variations in MC

https://sbn-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=26845
https://sbn-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=26355
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TPC EW ResponseTPC EW Response
G. Putnam
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TPC EE ResponseTPC EE Response
G. Putnam
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TPC WW ResponseTPC WW Response
G. Putnam
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TPC WE ResponseTPC WE Response
G. Putnam
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Binning in MPV dQ/dxBinning in MPV dQ/dx

Higher Bin #,
Transparency

Lower Bin #,
Transparency
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Spatial Study Results – Bin 1Spatial Study Results – Bin 1
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Spatial Study Results – Bin 2Spatial Study Results – Bin 2
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Spatial Study Results – Bin 3Spatial Study Results – Bin 3
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Spatial Study Results – Bin 4Spatial Study Results – Bin 4
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Spatial Study Results – Bin 5Spatial Study Results – Bin 5
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Spatial Study Results – Bin 6Spatial Study Results – Bin 6
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Spatial Study Results – Bin 7Spatial Study Results – Bin 7
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Spatial Study Results – Bin 8Spatial Study Results – Bin 8
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Spatial Study Results – Bin 9Spatial Study Results – Bin 9
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Spatial Study Results – Bin 10Spatial Study Results – Bin 10
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Spatial Study Results – Bin 11Spatial Study Results – Bin 11



28

Spatial Study Results – Bin 12Spatial Study Results – Bin 12
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Spatial Study Results – Bin 13Spatial Study Results – Bin 13
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Spatial Study Results – Bin 14Spatial Study Results – Bin 14
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Spatial Study Results – Bin 15Spatial Study Results – Bin 15
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Plan for Response VariationsPlan for Response Variations

♦ Main conclusions from study of response spatial variations:
• No change in signal shape for Induction 1, Collection planes

• Systematic variation of signal shape for Induction 2 that seems to be 
parameterizable via single variable: ratio of positive lobe amplitude to 
negative lobe amplitude

♦ Normalization is such that Induction 1 and Induction 2 signal 
shapes are forced to agree at extremum of negative lobe 
(integral forced to agree for Collection plane), obscuring true 
effect: negative lobe gets smaller for lower transparency

♦ Plan moving forward:
• London Cooper-Troendle working on extracting signal shape 

variations from data via same fitting procedure as before (see here)

• Joseph Zennamo working with Sergey Martynenko to enable the 
simulation of spatial variations in signal shape within Wire-Cell

• Goal is to implement this in MC simulation by end of summer

https://sbn-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=30897&filename=calib.pdf&version=1
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Impact of Diffusion on dE/dxImpact of Diffusion on dE/dx

♦ Two JINST articles from SBN collaborators on impact of 
diffusion on dE/dx measurements – see here and here

♦ Work shows that D
T
 in particular can bias dE/dx MPV

♦ Proposed solution: average many neighboring channels 
together when estimating track dE/dx (~10)

♦ Problem: no measurement of D
T
 in LAr exists at E field 

anywhere near ICARUS drift E field of 500 V/cm!

G. Putnam, D. Schmitz

https://arxiv.org/abs/2205.06745
https://arxiv.org/abs/2201.09773


34

New Diffusion MeasurementsNew Diffusion Measurements

♦ New LAr diffusion measurements (D
L
 and D

T
) being pursued 

at both ICARUS and ProtoDUNE-SP
• ICARUS method uses (noise-filtered) raw waveforms for 

measurement of both D
L
 and D

T

• ProtoDUNE-SP method uses deconvolved waveforms for D
L
 and 

potentially for D
T
 as well, though dE/dx also looked at; see here

♦ ICARUS work will converge this summer – update D
L
 and D

T
 

in our MC simulation soon after

E. HinkleS. Ruterbories,
A. Mogan ICARUS

Preliminary

https://indico.fnal.gov/event/57487/contributions/267742/attachments/167315/223216/2023-05-23_DUNE_CM_Diffusion_Update.pdf
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Space Charge Effects (SCE)Space Charge Effects (SCE)

♦ Space charge effects (SCE) modeled in simulation
• Above:  spatial distortions (left), electric field distortions (right)

♦ Have begun to use 3D-reconstucted cosmic muon tracks to 
compare SCE in data and MC (see next slides)
• Producing data-driven SCE map to be put into simulation

Cathode
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Measuring SCEMeasuring SCE

♦ Biggest effect of SCE is transverse displacement from top/bottom of TPC
• From previous slide:  ΔY ~ 1.5 cm for track entry/exit points at TPC 

top/bottom

♦ Simpler:  estimate SCE in drift direction using reconstructed collection 
plane hit times from anode-cathode-crossing cosmic muon tracks

• Effect small in drift direction (ΔX ~ 0.3 cm), but measurable

• Methodology taken from previous ICARUS work:  arXiv:2001.08934

https://arxiv.org/abs/2001.08934
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Measuring SCEMeasuring SCE
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• From previous slide:  ΔY ~ 1.5 cm for track entry/exit points at TPC 

top/bottom

♦ Simpler:  estimate SCE in drift direction using reconstructed collection 
plane hit times from anode-cathode-crossing cosmic muon tracks

• Effect small in drift direction (ΔX ~ 0.3 cm), but measurable

• Methodology taken from previous ICARUS work:  arXiv:2001.08934

https://arxiv.org/abs/2001.08934
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SCE in ICARUS DataSCE in ICARUS Data

♦ Data used: “Run 0” dataset from 2021, May 31st through June 27th

♦ Slightly larger SCE in data than simulation for EW/WE/WW TPCs

♦ EE TPC shows larger discrepancy – related to field cage?

♦ Time dependence seems small (< 5%) but should study more data

♦ Lane Kashur working on measuring transverse offsets (in Y, Z) 
using end points of reconstructed tracks in 3D  consistency?→
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SCE in ICARUS DataSCE in ICARUS Data

♦ Data used: “Run 0” dataset from 2021, May 31st through June 27th

♦ Slightly larger SCE in data than simulation for EW/WE/WW TPCs

♦ EE TPC shows larger discrepancy – related to field cage?

♦ Time dependence seems small (< 5%) but should study more data

♦ Lane Kashur working on measuring transverse offsets (in Y, Z) 
using end points of reconstructed tracks in 3D  consistency?→
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WW Cosmic Track Start/End PointsWW Cosmic Track Start/End Points
L. Kashur

This will be hard 
to model in MC!

 

Instead, 
recommend to 
veto this region
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RecombinationRecombination

♦ Must correct for electron-ion recombination to nail energy 
scale for both MIPs (e.g. muons) and HIPs (e.g. protons)

♦ Nominally use Modified Box Model from ArgoNeuT

♦ Recently measured recombination at ICARUS, including angle 
dependence, and find consistent results with ArgoNeuT
• Angle-dependent correction important to nail PID (see above)

• Should also model this angular dependence in MC simulation

G. Putnam
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RecombinationRecombination

♦ Must correct for electron-ion recombination to nail energy 
scale for both MIPs (e.g. muons) and HIPs (e.g. protons)

♦ Nominally use Modified Box Model from ArgoNeuT

♦ Recently measured recombination at ICARUS, including angle 
dependence, and find consistent results with ArgoNeuT
• Angle-dependent correction important to nail PID (see above)

• Should also model this angular dependence in MC simulation

G. Putnam

With
Correction

Without
Correction
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ννμμ 2D Vertex Dist. (Pandora) 2D Vertex Dist. (Pandora)
J. Larkin
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PMT Timing CalibrationPMT Timing Calibration

♦ Also need final PMT timing calibration in place by this 
summer – needs to be applied to OpWaveforms/OpHits in 
stage-0 reco (where OpFlash data product is created)

♦ Requires precise reconstruction of light timing information; 
potential change to OpHit time determination for calibration?
• Move from mode signal time estimation to earliest signal time 

estimation in nominal OpHit reconstruction algorithm – baseline

• Should we instead move to algorithm proposed by Milind/Matteo, 
using fit to OpWaveform (see here for more info)?  Which is best?

M. Vicenzi

https://sbn-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=30279&filename=proposal_PMT_pulse_filtering_finding_ICARUSAnalysis_2mar2023.pdf&version=1
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BNB Beam Spill StructureBNB Beam Spill Structure

From MiniBooNE 
DM Paper

(arXiv link)

This shows BNB 
beam spill structure.

Need O(ns) level 
PMT timing
resolution!

https://arxiv.org/pdf/1807.06137.pdf
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PDS Timing @ MicroBooNEPDS Timing @ MicroBooNE

♦ MicroBooNE has been able to achieve O(ns) timing resolution 
with PMT system – see here
• MicroBooNE uses 60 ns shaping time, 64 MHz sampling

• ICARUS has no additional shaping, 1 GHz sampling  even easier→

♦ Basically we should just repeat MicroBooNE’s procedure
• Matteo Vicenzi revitalizing Andrea Scarpelli’s older work on this

• Must also finalize gain calibration, begin tuning of optical (photon) 
library – still need people to take this to finish line

https://arxiv.org/abs/2304.02076
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DiscussionDiscussion
♦ Discussed A LOT of items, but this isn’t even everything

• CRT gain/timing calibration for instance (not finished)

♦ Some immediate comments:
• Only minor residual data/MC bias on Ind2/Col TPC planes

• Major data/MC bias on Ind1 plane now understood

• Loose cables in WW TPC  hard to model in MC, should veto region →

• High rates of vertex reconstruction in EE TPC – not understood

• PDS timing needs to make further improvements if we want to use 
the beam spill structure for vetoing cosmics!  Perhaps most 
important for BSM physics (veto neutrinos)

• PDS light yield variations (“optical library”) need study, will impact 
trigger efficiency calculations – very important missing item!

♦ Important for this workshop: should ML team repeat any of 
this work, and where do calibrations get applied for ML?
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Calibrations for ML ApproachCalibrations for ML Approach

♦ Detector calibrations, if done properly, should be applicable to 
all reconstruction approaches
• That is, biases specific to reconstruction approach should be 

accounted for in extracting calibration constants

• Despite majority of calibrations done using tracks reconstructed 
using Pandora, this is being done already: force agreement between 
data and MC in one approach (e.g. Pandora)  unlikely to see →
significant bias between data and MC for another approach (e.g. ML)

♦ However, it is wise to perform cross-checks using each 
reconstruction approach independently (Pandora, ML, other)
• Should expect no major data/MC bias – if do see such bias, revisit 

experiment-wide calibrations used for all reconstruction approaches

• Additional benefit:  may provide correction factors (e.g. for energy) 
specific to reconstruction approach to apply to both data and MC

• We should do this for ML approach – which cross-checks though?
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ML Calibration Cross-ChecksML Calibration Cross-Checks

♦ Suggestion: carry out cross-checks at per-particle level, 
including as many particle types and topologies as possible
• Stopping muon dE/dx vs. residual range – likely need additional 

ML-specific energy correction factor from this step (again, not to 
address data/MC bias, but get “correct” values for both data and MC)

• Neutrino-induced proton dE/dx vs. residual range

• Michel electron energy distribution

• Neutral pion mass distribution

♦ We need data/MC comparisons w/ ML for all of these ASAP!

Produce 
distribution for 

both data and MC 
using ML as well
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ML Calibration InfrastructureML Calibration Infrastructure
♦ Where Pandora applies calibrations:

• Corrections of TPC electronics gain, electron lifetime, recombination 
applied at CAF-making stage for both data and MC

• Corrections of non-uniformities in TPC charge scale (i.e. corrections for 
transparency) applied at CAF-making stage for data only

• SCE corrections not yet applied, but handles for them in Pandora

• Nothing currently done for PMT/CRT calibrations outside of stage-0

• All other detector effects (e.g. spatial variations in signal response, noise, 
diffusion) folded into MC – same for all reconstruction approaches

♦ For ML, we have decisions to make:
• Apply calibrations when we make CAFs?  Share code w/ Pandora 

reconstruction team, but forced to do selections on CAF files

• Apply further upstream in ML chain?  Must develop code, but allows 
more flexibility and may need it for ML training / applying weights

• Note:  just need 3D hits with charge to apply all TPC calibrations except 
angle-dependent recombination correction
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BACKUP
SLIDES
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Possibly Relevant for EE IssuePossibly Relevant for EE Issue
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