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Liquid Argon Time-Projection Chambers
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The modern Particle Imaging Detector

LArTPC are at the center stage                 
of beam 𝜈 physics in the US

Short Baseline Neutrino program
● μBooNE, ICARUS, SBND

DUNE long-baseline experiment
● Wire: DUNE FD
● Pixel: DUNE ND-LAr

Advantages:
● Detailed: O(1) mm resolution, 

precise calorimetry
● Scalable: Up to tens of kt

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)
IC

A
R

U
S

, a
rX

iv
:1

21
0.

50
89

LA
rP

IX
, a

rX
iv

:1
80

8.
02

96
9

W
ire

 T
PC

 (2
D)

Pi
xe

l T
PC

 (3
D)

https://arxiv.org/abs/1210.5089
https://arxiv.org/abs/1808.02969


Liquid Argon Time-Projection Chambers
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Case study: Detector

The largest LArTPC in operation is ICARUS
● Surface-level detector
● 500 t fiducial mass (2 cryos, 4 TPCs)
● Physics: sterile neutrinos (MiniBooNE / 

Neutrino-4), cross sections, BSM

Event rates
● BNB beam: ~ 0.03 Hz neutrinos
● NuMI off-axis: ~ 0.015 Hz neutrinos
● In-time cosmic activity: ~ 0.25 Hz

Low-rate neutrino experiment with a 
significant cosmic background
ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Generic simulated dataset used for optimization and testing:
● Isotropic mix of 1 set of particles sharing a vertex + 5-9 localized single particles

○ Covers phase-space of neutrino interactions + cosmics, but…
○ … stays agnostic to physics → unbiased
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Green boxes: TPCs in Cryo. E

MPV

MPR particles

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Liquid Argon Time-Projection Chambers
Case study: Datasets
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Generic simulated dataset used for optimization and testing:
● Isotropic mix of 1 set of particles sharing a vertex + 5-9 localized single particles

○ Covers phase-space of neutrino interactions + cosmics, but…
○ … stays agnostic to physics → unbiased

Specific datasets used for validation:
● Simulated BNB νμ and BNB νe + hand-scanned data events (C. Farnese et al.)

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Liquid Argon Time-Projection Chambers
Case study: Datasets

Generic BNB νμ 
(+ cosmics)

BNB νe
(+ cosmics)
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Reconstruction in LArTPCs
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Challenges with LAr

Dense medium → Slow

Electron drift velocity O(1) mm/μs
● Long (O(1) ms) readout window
● Need light association for timing

High Z material → Messy  

Argon has a large nucleus (Z=18)
● Complicated nuclear physics
● Secondary interactions

ICARUS simulation

νμ

μ-

ICARUS simulation

Primary Secondary

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



ML Working group in ICARUS lead by F. Drielsma and K. Terao
- Do physics with ML-based LArTPC reco. chain in ICARUS
- LArTPC experts: T. Usher (SLAC), M. Mooney (CSU)
- ML experts: L. Dominé, D.H. Koh, Y-J. Jwa (SLAC)
- Analysts: A. Mogan, D. Carber, J. Dyer, L. Kashur, J. Mueller 

(CSU, ICARUS), B. Carlson (UF, SBND)

T. Usher
Signal Proc.

M. Mooney
Data/sim

L. Dominé
Muon decay

D. H. Koh
ν

e
 LEE

Y-J. Jwa
Reco.

D. Carber
NuMI ν

e

J. Dyer
H->ee

L. Kashur
BNB νμ CC-π0

J. Mueller
BNB νμ CCQE

A. Mogan
Cosmic rejection

F. Drielsma K. Terao
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Group Composition

ICARUS ML Working Group

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



The ML-based reconstruction chain is simpler in 3D space

Tomographic reco. is necessary to use the ML-based chain on Wire LArTPCs

Tomographic Reconstruction
Approach

8ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



The tomographic reconstruction is broken down into three steps
A. Cluster3D (T. Usher) finds valid combinations of hits across 2 or 3 planes
B. A CNN identifies and removes artifacts of the reconstruction (deghosting)
C. Hit charge is redistributed to remaining space points

9

Tomographic Reconstruction
Approach

A. B. C.
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In the case of wire LArTPCs, we have a set of 2D hits in each of 3 projections:

●  

○          is measured along a common axis, 

○          is measured along 

Cluster3D is a traditional algorithm which combines hits are compatible:

● Find pairs of hits, (hp,i, hq,j),   which is compatible in time: |tp,i - tq,j| < ẟ

● Form a doublet candidate space point, xij, where the two wires intersect

● If a hit in the third plane, hr,k, is compatible with xij, form a triplet xijk

Tomographic Reconstruction
Cluster3D (T. Usher)

10ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Two pieces of information from Cluster3D currently used by the reconstruction

11

Tomographic Reconstruction
Cluster3D (T. Usher)
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Charge Q

● For doublets, Q = Qi + Qj

● For triplets, find where the WFs 

overlap in time and integrate the 

charge on the collection plane

Quality χ2 

● For doublets, χ2 =(ti-tij)
2 /σi

2  + 

(tj-tij)
2/σj with tij the weighted time 

average

● For triplets, tij is checked against the 

third plane as χ2 = (tk-tij)
2/(σi

2+σj
2+σk

2)

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Two pieces of information from Cluster3D currently used by the reconstruction

Tomographic Reconstruction
Cluster3D (T. Usher)
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Charge Q Quality χ2 

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Tomographic Reconstruction
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Cluster3D (T. Usher)

At this point in time, it’s hard to discern what’s going on…

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Cluster3D space points



Semantic Segmentation
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Backbone (L. Dominé)

UResNet (UNet + ResNet + Sparse Conv.) as the backbone feature extractor

Input Output

Paper: PhysRevD.102.012005

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://github.com/NVIDIA/MinkowskiEngine
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Semantic Segmentation
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Backbone (L. Dominé)

UResNet (UNet + ResNet + Sparse Conv.) as the backbone feature extractor

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

UNet
● Downsizing -> expand 

receptive field
● Skip connections -> 

preserve resolution

ResNet
● Identity bypass + 

convolution -> learns 
residual transform

● Speeds up learning, 
enables deeper networks

Sparse Convolutions
● Only applies 

convolutions on 
active pixels

● Saves memory, 
execution speed 
(dramatically)

https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://github.com/NVIDIA/MinkowskiEngine


Semantic Segmentation
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UResNet architecture (L. Dominé) 

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Input to the network:
● Voxel set: rasterized Cluster3D space points (3x3x3 mm3)
● Features (Nx2): space point charge and quality

Output:
● Features (NxC): one per target class and per voxel, fi, c

○ 2 numbers for ghost labeling, 5 numbers for semantic segmentation

Loss:
● Cross-entropy loss: 

○ Normalize output with Softmax: si = exp(-fi, c)/∑c exp(-fi, c)
○ Loss formula: L = -N-1∑i ∑cti,c ln(si,c) with

ti the one-hot encoded label vector, e.g. (0, 1, 0, 0, 0)



Semantic Segmentation
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UResNet architecture (L. Dominé) 

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Now, how does one optimize an architecture like this?
● Things like UNet depth, input number of features, are hyperparameters
● Must scan to identify optimal values (currently using F32D5)

Paper: PhysRevD.102.012005

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Tomographic Reconstruction
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Ghost busting

Now armed with UResNet, let’s bust ghosts
● Classify each voxel into two categories: ghost and non-ghost

Cluster3D space points Deghosted image

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

True non-ghost
Predicted non-ghost



Tomographic Reconstruction
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Ghost busting

Now armed with UResNet, let’s bust ghosts
● Classify each voxel into two categories: ghost and non-ghost

BNB νμ  only

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Cluster3D space points



Definition: (total length of gaps)/(length of track)
● Excellent track completeness with doublets
● Justifies the computational cost

With doublets

Tomographic Reconstruction
Track completeness

20ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Without doublets



Tomographic Reconstruction
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Charge conservation

What does the deghosted voxel charge look like?
● Raw charge is very angle dependant, because of varying hit multiplicity

Cluster3D space points Raw deghosted charge

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Charge redistribution scheme:
1. Keep track of hit composition for each Cluster3D SP
2. Record charge and hit composition of selected SP for each voxel

- 2(+1) unique hit identifiers and 2(+1) hit integrated charge values (one per plane)
3.   Apply deghosting algorithm on image

- Use charge and χ2 of selected space point as features
4. Count the number of times, np,i , each hit, hp,i , is used in the deghosted voxels
5. Recompute the corrected charge of all voxels, which account for hit multiplicity

22

Tomographic Reconstruction
Charge rescaling

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC) 22



Tomographic Reconstruction
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Ghost busting

Now armed with UResNet, let’s 
● Raw charge is very angle dependant, because if hit multiplicity!

Rescaled charge

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Raw deghosted charge



Definition: (total track charge)/(length of track)
● dQ/dx affected by remaining inefficiencies
● Unmatched hits -> loss of charge

With doublets

Tomographic Reconstruction
Charge conservation

24ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Without doublets



Now that we only have legitimate space points left:
● Very clear topological differences in leftover voxels (UResNet!)

Semantic segmentation
Particle topologies

25ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Primary showers have sparse and broad fragments

Tracks are rectilinear and continuous

Michel electrons live next to a muon Bragg peak

Delta rays are attached to side of tracks

Low energy deposits are amorphous and isolated



Semantic Segmentation
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Performance

Separate topologically different types of activity
● Showers, Tracks, Michel electrons, delta rays,  low energy blips
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Semantic segmentation

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Point Proposal Network (PPN)
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Architecture (L. Dominé)

The Point Proposal Network 
(PPN) identifies points of 
interest using decoder features:
● Three CCN layers to 

progressively narrow ROI
● Last layer reconstructs:

○ Relative position to 
voxel center of active 
voxel

○ Point type
● Post-processing 

aggregates nearby points Paper: PhysRevD.104.032004

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004


Point Proposal Network (PPN)
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Architecture (L. Dominé) 

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Input to the network:
● Voxel set: deghosted and rescaled voxels
● Features (Nx1): rescaled charge in each voxel

Output:

● PPN1 (N’’x2): scores for positive/negative on each voxel at depth D1
● PPN2 (N’x2): scores for positive/negative on each voxel at depth D2
● PPN3 (Nx10): scores for

○ Positive/negative (2): Is a pixel within 5 voxels of a point of interest at the original res.?
○ Class (5): Which type of particle is a point associated with?
○ Position (3): How far is the voxel center from the point of interest?
○ Start/end point (2): Is this voxel at the start or the end of a particle trajectory?



Point Proposal Network (PPN)
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Architecture (L. Dominé) 

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Losses:
● Cross-entropy loss on classification tasks (same as segmentation)

○ Positive/negative classification (one per PPN layer, so three of them)
○ Start/end classification (only on positive points)
○ Point type classification (only on positive points)

● L2 loss on position regression
○ Loss only applied for positive voxels
○  

■ vi is the center of the ith voxel
■ qi is is the predicted displacement for the ith voxel
■ pj is the position of the jth label point of interest

● The total loss is the sum of all 6 losses



Point Proposal Network (PPN)
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Masks

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Let’s take a look at what the masks look like at each layer (other image)
● Regions of interest already identified at lower resolutions
● Resolution improved at each layer



Point Proposal Network (PPN)
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Scores and distances

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Let’s take a look at what the score and distance predictions look like

PPN scores (0->1) PPN distances (0->5)



Point Proposal Network (PPN)
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Points of interest

Narrow down a region proposal all the way to a point 
● Predict masks at different scales with UResNet, predict position in voxel
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Points of interest

1 voxel = 3x3x3 mm3

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004
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Considerations

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

So far, each voxel has been treated individually. What about clustering?
● We don’t know how many cluster an image has
● It is no longer a simple classification/regression task for each voxel



Clustering
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Considerations

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

So far, each voxel has been treated individually. What about clustering?
● We don’t know how many cluster an image has
● It is no longer a simple classification/regression task for each voxel

“Why don’t you use DBSCAN, dummy?”
● DBSCAN finds connected components, i.e. voxels that touch each other

○ It can give you individual shower fragments reliably (although don’t forget S->ee!)
○ It can cluster uninterrupted solitary tracks reliably



Clustering
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Considerations

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

So far, each voxel has been treated individually. What about clustering?
● We don’t know how many cluster an image has
● It is no longer a simple classification/regression task for each voxel

“Why don’t you use DBSCAN, dummy?”
● DBSCAN finds connected components, i.e. voxels that touch each other

○ It can give you individual shower fragments reliably (although don’t forget S->ee!)
○ It can cluster uninterrupted solitary tracks reliably

● But…
○ What about tracks (or showers) coming from a common vertex?
○ What about tracks that have a break in them (cathode crosser, inefficiencies, etc.)?
○ How do you put shower fragments together?
○ (DBSCAN typically optimized for CPU, it ain’t cheap to run…)



Clustering
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Considerations

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

So far, each voxel has been treated individually. What about clustering?
● We don’t know how many cluster an image has
● It is no longer a simple classification/regression task for each voxel

“Why don’t you use DBSCAN, dummy?”
● DBSCAN finds connected components, i.e. voxels that touch each other

○ It can give you individual shower fragments reliably (although don’t forget S->ee!)
○ It can cluster uninterrupted solitery tracks reliably

● But…
○ What about tracks (or showers) coming from a common vertex?
○ What about tracks that have a break in them (cathode crosser, inefficiencies, etc.)?
○ How do you put shower fragments together?
○ (DBSCAN typically optimized for CPU, it ain’t cheap to run…)

● Let’s address problem 1, we’ll deal with 2 and 3 later

Dense clustering problem

Aggregation problem



Dense clustering
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Approach

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

You might say: “Just use PPN points to break touching instances”
● We tried, let’s just say “not great, not terrible”:

○ Tracks can touch away from PPN points (relatively rare in 3D, thank you tomographic reco.)
○ Small tracks will get killed in the process (anything < masking radius)
○ Highly colinear tracks don’t get broken up (detaching point > masking radius)
○ Does not disentangle colinear showers (no breaking point, many boundaries)



Dense clustering
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Approach

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

You might say: “Just use PPN points to break touching instances”
● We tried, let’s just say “not great, not terrible”:

○ Tracks can touch away from PPN points (relatively rare in 3D, thank you tomographic reco.)
○ Small tracks will get killed in the process (anything < masking radius)
○ Highly colinear tracks don’t get broken up (detaching point > masking radius)
○ Does not disentangle colinear showers (no breaking point, many boundaries)

How else can we do it?
1. Need to transform input voxels to a space where clusters are disconnected
2. Ask the network to give you information about location and size of clusters
3. Cluster in the transformed space using either

○ Informed Gaussian mixture: SPICE
○ Graph edge selection and connected components: Graph-SPICE (smart DBSCAN!)



Dense clustering
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Spatial transformation

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Losses in the embedding (transformed) space:
● Encourage points from the same cluster to stick together ( Lvar )
● Encourage points from separate clusters to distance themselves ( Ldist )
● Regulalize to prevent distances exploding ( Lreg )



Dense clustering
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Spatial transformation

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

In practice, this makes touching tracks visually distinct!
● How do we put cluster them together ?

Track cluster labels Track cluster labels in 
embedding space (learned)



SPICE
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Gaussian mixture

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

One way is to use an informed Gaussian mixture. For each voxel:
● Predict proximity to a cluster centroid (seediness score, si)
● Predict size (margin, σi) of cluster it belongs to
● Pick highest seediness point, merge points that satisfy 
● Repeat until the next be seed is < 0.5

Track points seediness Track points margins Gaussian kernels



Graph-SPICE
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Connected components

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Another way: build a kNN graph and to find connected components



Clustering metrics
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Definitions

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Quantifying clustering accuracy is not trivial
● There is no single-voxel accuracy (cluster ID is not fixed)

Three metrics we use:
● Efficiency: 

○

● Purity: 
○

T1

T2

R1

R2

Eff = (1+0.6)/2 = 0.8
Pur = (0.71+1)/2 = 0.85



Clustering metrics
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Definitions

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Quantifying clustering accuracy is not trivial
● There is no single-voxel accuracy (cluster ID is not fixed)

Three metrics we use:
● Efficiency: 

○

● Purity: 
○

● Adjusted Rand Index



Graph-SPICE
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Performance

This approach works significantly better than PPN+DBSCAN
● Cluster track/shower fragments at this stage
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Fragment instances

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://drive.google.com/file/d/15NoEamPKjj7jRVedJS6Q3vf30mj0Uwx3/view?usp=sharing
https://arxiv.org/abs/2007.03083
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Considerations

Sweet, we solved problem 1, now we have particle fragments:
● Tracks are broken up where there’s gaps (inefficiencies/dead material)
● Showers are broken up in fragments (e+/e- constituents)

How do we aggregate them them together?
● Treat each fragment as a whole, encode it:

○ Use a set of summary statistics
● Find out which fragments belong together, which don’t

○ This sounds a lot like graph edge classification problem
● Along the way: find out information about individual fragments

○ This sounds a lot like a graph node classification problem

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Aggregation
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Node encoding

Input:
● Particle fragments

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Aggregation
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Node encoding

Input:
● Particle fragments

Node features:
● Particle centroid
● Covariance matrix, PCA
● End points (PPN), directions, dQ/dx

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Aggregation
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Node encoding

Input:
● Particle fragments

Node features:
● Particle centroid
● Covariance matrix, PCA
● End points (PPN), directions, dQ/dx

Input graph:
● All edges within some natural limit

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Aggregation
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Node encoding

Input:
● Particle fragments

Node features:
● Particle centroid
● Covariance matrix, PCA
● End points (PPN), directions, dQ/dx

Input graph:
● All edges within some natural limit

Edge features:
● Closest points of approach
● Displacement vector

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)
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Graph construction

Valid input edges careful selected depending on particle type (segmentation)

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Showers: 150 cm

Tracks: 15 cm

https://sbn-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=28398&filename=2022-10-26%20Aggregation%20Input%20Graphs.pdf&version=1
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Message passing, loss

Lots of edges to sort through. Must
propagate information through message 
passing (MetaLayer arXiv:1806.01261):

● Edge update:

● Node update:

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://arxiv.org/pdf/1806.01261.pdf


Aggregation
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Message passing, loss

Lots of edges to sort through. Must
propagate information through message 
passing (MetaLayer arXiv:1806.01261):

● Edge update:

● Node update:

After 3 iterations:
● Edge binary classification
● Target: 1 if same particle, 0 otherwise

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://arxiv.org/pdf/1806.01261.pdf
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Edge selection

Find connected components and it’s a done deal? Not quite…

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)
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Edge selection

The network predicts a score matrix, S,
which is proxy for the adjacency matrix, A

● What is the best partition, g*?

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)
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Edge selection

The network predicts a score matrix, S,
which is proxy for the adjacency matrix, A

● What is the best partition, g*?

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)
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Edge selection

The network predicts a score matrix, S,
which is proxy for the adjacency matrix, A

● What is the best partition, g*?
We want to minimize the CE loss:

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)
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Edge selection

The network predicts a score matrix, S,
which is proxy for the adjacency matrix, A

● What is the best partition, g*?
We want to minimize the CE loss:

G is the set of all possible partitions:
● Cannot bruteforce (B20 = 5x1013)
● Start with an empty graph

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)
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Edge selection

The network predicts a score matrix, S,
which is proxy for the adjacency matrix, A

● What is the best partition, g*?
We want to minimize the CE loss:

G is the set of all possible partitions:
● Cannot bruteforce (B20 = 5x1013)
● Start with an empty graph
● Iteratively add most likely edges until 

the next best edge is < 0.5
ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)
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Edge selection

The network predicts a score matrix, S,
which is proxy for the adjacency matrix, A

● What is the best partition, g*?
We want to minimize the CE loss:

G is the set of all possible partitions:
● Cannot bruteforce (B20 = 5x1013)
● Start with an empty graph
● Iteratively add most likely edges until 

the next best edge is < 0.5
ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)
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Edge selection

The network predicts a score matrix, S,
which is proxy for the adjacency matrix, A

● What is the best partition, g*?
We want to minimize the CE loss:

G is the set of all possible partitions:
● Cannot bruteforce (B20 = 5x1013)
● Start with an empty graph
● Iteratively add most likely edges until 

the next best edge is < 0.5
ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)
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Edge selection

This automatically gets rid of spurious positive edges!

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Graph Particle Aggregator (GrapPA)
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Architecture

Paper: PhysRevD.104.072004

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Graph Particle Aggregator (GrapPA)
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Fragment aggregation performance

Build particles from individual particle fragments
● Excellent clustering performance. Tracks hardest, as expected
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Graph Particle Aggregator (GrapPA)
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Shower primary identification

Classify each shower fragment as either primary or secondary
● Very reliably finds the start of a shower
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96.6% accurate

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Aggregation
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Interaction Aggregation

Now we wanna go further and:
● Cluster particles into interactions
● Classify particles: species and primary

Very similar problem to fragment clustering
● Input: fragment -> particle
● Edge input: fragment expected gaps -> particle expected gaps
● Edge target: particle -> interaction
● Node target: shower primary -> (PID, primary)

Reuse GrapPA and train on this task instead!
ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Aggregation
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Graph edge classification

Build interactions from individual particles
● Easily cluster disjoint particles, most inefficiencies come from n activity
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Particle Identification
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Graph node classification

Particle species much easier to infer in context
● Michel decays, secondary hadrons, shower conversion gaps, etc.

BNB νμ  primaries only
Photon
Electron
Muon
Pion
Proton

Particle species

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Particle Identification
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Graph node classification

Particle species much easier to infer in context
● Michel decays, secondary hadrons, shower conversion gaps, etc.

Generic dataset (particle bombs)

Particle species

Photon
Electron
Muon
Pion
Proton

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Primary Identification
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Graph node classification

Important to know which particle originate from the vertex
● Central to any exclusive analysis (study specific channels)

Interaction primaries

Secondary
Primary

1μ2p1π0

BNB νμ  primaries only

Accuracy: 89%

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



Reconstruction in LArTPCs
Full Reconstruction Chain Architecture

Paper: arXiv:2102.01033

End-to-end ML-based reconstruction chain 
● UResNet for pixel feature extraction, GrapPA for superstructure formation

Convolutional NN Graph NN

71ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://arxiv.org/abs/2102.01033


A fair bit of work invested in speeding up the 
execution speed. On ICARUS:
● ~2 M input space points/event
● O(1) M edges in the aggregator graphs
● TPC reco: 2 s/event on an A100

Very cheap to run on large datasets:
● 1 year of ICARUS beam-on data can be 

reconstructed in 1 day with <200 A100s
● Perlmutter (NERSC): > 6000 A100s

Only scales with space point count
● Very cheap to run on DUNE-FD

e-

p+π+

Reconstruction in LArTPCs
Scalability

72ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

ICARUS Data
Entire reco. chain 
executed on 2 cryos



DeepLearnPhysics collaboration (ML techniques R&D)
● Public LAr simulation

○ Potential for open real data from prototypes
● Shared software dependencies with Docker/Singularity
● Open reconstruction software on GitHub
● Fully reproducible results

○ Readers have reproduced PhysRevD.102.012005

73HEP Institutional Review 2022

e-

p+π+

Reconstruction in LArTPCs
Open-source ecosystem
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http://deeplearnphysics.org/
https://osf.io/bu4fp/
https://hub.docker.com/r/deeplearnphysics/larcv2
https://github.com/DeepLearnPhysics/lartpc_mlreco3d
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Conclusions
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Takeaways

End-to-end ML-based reconstruction chain 
mature and functional

● Used on ICARUS sim./data and DUNE-ND 
(high neutrino pileup) sim. today 

● Check out this ICARUS interactive 
reconstructed event !

Exciting times:
● Many great analysis underway
● A lot of data in the can, ready to go
● Let’s bring it home!

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

https://web.stanford.edu/~drielsma/event_icarus_full.html
https://web.stanford.edu/~drielsma/event_icarus_full.html
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Stanford, CS231

Angshuman Gosh, DLDC 
2021

Reconstruction in LArTPCs
Machine Learning in Computer Vision (CV)

ML is the state-of-the-art in CV, i.e. extracting high level information from images
• ML revolutionized accuracy on image processing tasks
• Should leverage those techniques in HEP

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC) 76

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
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νe, CC, 800 MeVImage Classifier (CNN)
• What to do with > 1 interaction ?
• What if it fails ? Why ?
• What behavior if unknown interaction?

Input

Reconstruction in LArTPCs
Hierarchical feature extraction

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC) 77



Reconstruction in LArTPCs
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Hierarchical feature extraction

What is relevant to pattern recognition in a detailed interaction image?
1. Separate topologically distinguishable types of activity
2. Identify important points (vertex, start points, end points)
3. Cluster individual particles (tracks and full showers)
4. Cluster interactions, identify particle properties in context

e-

p+π+

Pixel-level

Cluster-level

p+

431+2Input 1 GeV νe
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So far, we have tackled the reconstruction challenge, what's next?
● Can we go beyond “most likely” prediction and quantify an uncertainty ?
● Can we mitigate differences between simulation and data ?
● Can we optimize detector modeling from data and remove the issue altogether ?
● Can we unfold detector effects directly ? Yes, learn inverse function automatically!
● Can we learn physics (generators) from data ? Yes and no

Non-Reconstruction ML Efforts in LArTPCs
Future prospects

79ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)



80HEP Institutional Review 2022

Goals of Uncertainty Quantification in Probabilistic Models:
• Calibration: Score p in [0,1] <=> probability p to be correct
• Error detection: Low confidence <=> large uncertainty

80ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Uncertainty Quantification
Overview



Can we make the light simulation differentiable ?
• Photon library maps x = (x, y, z) to visibility in each PMT (number of photons)
• Learn photon library using scene representation (SIREN): F (x, θ) differentiable
Calibration process: bias in library (offset in the actual visibility): θ ′ = θ + δ
• Compare observed visibility to predicted visibility, use gradient descent to find θ ′ !

81ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Uncertainty Quantification
Photon visibility map



82HEP Institutional Review 2022

Basics of Domain Adversarial Networks:
• Penalized for producing features that are different between 

sim. and data

82ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Domain Adversarial Training
Overview
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Basics of Domain Adversarial Networks:
• Penalized for producing features that are different between sim. and data

Shower voxels Track voxels

Michel voxels
Shower voxels

Number of iterations

W/o adversarial loss

With adversarial loss

W/o adversarial loss With adversarial loss
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Domain Adversarial Training
Overview


