Machine Learning Basics For ICARUS ML Workshop

Kazuhiro Terao SLAC National Accelerator Laboratory

Original image credit: xkcd

Machine Learning, Deep Learning, AI ... what are they?

Machine Learning, Deep Learning, AI ... what are they?

Difference between machine learning and AI:

If it is written in Python, it's probably machine learning

.Τ

If it is written in PowerPoint, it's probably AI

3:25 AM \cdot Nov 23, 2018 \cdot Twitter Web Client

8,264 Retweets 911 Quote Tweets 23.8K Likes

Machine Learning, Deep Learning, AI ... what are they?

Artificial Intelligence

• A computer with intelligence

Machine Learning

• Process to generate an intelligent algorithm from data.

Deep Learning

• ML methods that aim at complex pipelines working on low-level data

Turning data into an algorithm

Hypothesis Set

Algorithm = a numeric program with input and output

$$f(x): \mathcal{X} \to \mathcal{Y}$$

Popular choice to form a "set of candidate algorithm": parametrization

$$f_{\phi}(x): \mathcal{X} \to \mathcal{Y}$$

$$f_{\phi}(x)$$

$$f_{\phi}(x)$$

$$f_{\phi}(x)$$

$$f_{\phi}(x)$$

$$f_{\phi}(x)$$

$$f_{\phi}(x)$$

$$f_{\phi}(x)$$

Statistical Learning

Assume: data is a stochastic sample. $s \sim p(s)$

In order to learn, we must estimate the performance usually measured as a "risk" or "loss" (i.e. the lower the better). The true expectation loss is:

$$\bar{L}_{\phi} = E_{s \sim p(s)} \ L_{\phi}(s) = \int \mathrm{d}s \ L(s)p(s)$$

Statistical Learning

Assume: data is a stochastic sample. $s \sim p(s)$

In order to learn, we must estimate the performance usually measured as a "risk" or "loss" (i.e. the lower the better). The true expectation loss is:

$$\bar{L}_{\phi} = E_{s \sim p(s)} L_{\phi}(s) = \int \mathrm{d}s \ L(s)p(s)$$

However, we only have data set (sample "s") and have no access to p(s). We can, however, have an unbiased approximation, the **empirical loss**

$$\bar{L} \approx L_{\text{MC}}(D) = \frac{1}{N} \sum_{i} L(s_i)$$

Empirical Risk Minimization

Minimization of empirical loss = choose a hypothesis from the set such that it performs best for the given dataset. The data size is critical.

Small Data

Empirical Risk Minimization

Minimization of empirical loss = choose a hypothesis from the set such that it performs best for the given dataset. The data size is critical.

Learning algorithm: gradient-based optimization

Gradient descent (GD): $\theta_t = \theta_{t-1} - \lambda \nabla_{\theta} \mathcal{L}(x, \theta)$ **Stochastic GD** (SGD) approx. using **subset of data**.

- 1. Create a batch = random subset of data.
- 2. Compute the gradient for the batch and update the parameters.

Empirical risk: 25%

Empirical risk: 0%

True risk: ~50%

Empirical risk: 25%

Empirical risk: 0%

True risk: ~16%

True risk: ~8%

Neural Networks

Introduction to Neural Network

The basic unit of a neural net is the *perceptron* (loosely based on a real neuron)

Takes in a vector of inputs (*x*). Commonly inputs are summed with weights (*w*) and offset (*b*) then run through activation.

Imagine using two features to separate cats and dogs

$$\sigma(\vec{x}) = \begin{cases} \vec{w}_i \cdot \vec{x} + b_i & \vec{w}_i \cdot \vec{x} + b_i \ge 0\\ 0 & \vec{w}_i \cdot \vec{x} + b_i < 0. \end{cases}$$

By picking a value for **w** and **b**, we define a boundary between the two sets of data

What if we have a new data point?

from wikipedia

What if we have a new data point?

We can **add another perceptron** to help (but does not yet solve the problem)

What if we have a new data point?

 x_o

 X_1

from wikipedia

Another layer can classify based on preceding layer's output (of non-linear activation)

 \sum_{2}

Output

cat

dog

Vanilla neural net Multi-Layer Perceptrons (MLP)

input hidden output layer, \vec{x} layers layer, \vec{y}

A traditional neural network consists of a stack of layers of such neurons where each neuron is *fully connected* to other neurons of the neighbor layers

Neural Network: Architecture Choice

Wide

Deep

Universal Approximation Theorem

It can be shown that a MLP with single hidden layer is a universal function approximator (can represent any function).

Why do we need a deep network?

Benefits of the depth

A neural network becomes exponentially more expressive with the depth due to composition of features into higher level concepts.

Convolutional Neural Network for Image Data

Recap: classification...

Output

Next step:

Fully-connected NN can be useful.

How can we extract "features" from image? Deep Learning

Next step:

How about flattened image + MLP?

- For an input image of 100x100 pixels RGB image, how many weights does 1 neuron carry? **30,000** for just 1 neuron!
- Two image of the same cat, but in a different position w.r.t. the frame. Would neuron react the same? No! Position information is encoded!

CNNs introduce a *limitation to MLP* by forcing a neuron to look at only local, translation invariant features

$$f_{i,j}(X) = \sigma \left(W_i \cdot X_j + b_i \right),$$

Still a linear transformation! Weights=matrix, output=scalar Analyze a fixed-size, local sub-matrix from the input.

- Traverse over 2D space to process the whole input
- Locality and translation-invariance

Convolution 3x3 Stride 1, no padding

Image

Convolved Feature Convolution 3x3 Stride 1, padding 1

e.g) max pooling

- CNNs are "feature extraction machine"
 - Consists of a "convolution layer" with "kernels"
 - A chain of parallelizable linear algebra operations
- CNN seen as a geometrical data transformer
 Later in this lecture

Graph Neural Networks

Graph Neural Networks

How do we analyze an unstructured data?

A social network

Citation/Reference Map

Graph Neural Networks

- A set of N_v nodes $\{v_i\}$ that represent entities
- A set of N_{ρ} edges $\{e_i\}$ that represent correlations between entities
- A global state **u** that represent the whole graph

Tasks for GNNs

- Node classification/regression
- Edge classification/regression
- Graph classification/regression

Feature Engineering: How?

Recall CNN: a filter (neuron) analyzed locally connected pixel features GNN: a filter analyze features of a target by including connected neighbors

One of the successful first attempts is called a "Graph Convolution"

- Node feature matrix V: shape (N, N_v) for N nodes with N_v features
- Adjacency matrix A: shape (N, N) for N nodes representing the connections between nodes (i.e. entries are 0 or 1)

$$\mathbf{v}_i' = \sigma\left(\sum_{j=1}^N A_{ij}\mathbf{v}_j W\right)$$

A node is updated by incorporating features from itself and other connected nodes! However...

- Lacking edge and graph level features
- Only supports a simple sum of connected nodes

- Edge update: $\mathbf{e'}_k = \phi_e (\mathbf{e}_k, \mathbf{v}_k^r, \mathbf{v}_k^s, \mathbf{u})$ takes the original edge, connected nodes, and global state into a learnable function ϕ_e
- Node update: v'_ℓ = φ_v (ρ_{e,v} (E'_ℓ), v_ℓ, u) takes the original node, global state, and edge features aggregated by ρ_{e,v} into a learnable function φ_v
- **Global update**: $\mathbf{u}' = \phi_u \left(\rho_{e,u} \left(E' \right), \rho_{v,u} \left(V' \right), \mathbf{u} \right)$ takes the original global state, aggregated edge features, and aggregated node features into a learnable function ϕ_u

(a) Edge update

(b) Node update

(c) Global update

m = 0

m = 0

m = 1

m = 0

m = 0

m = 1

m = 2

m = 0

m = 1

m = 0

m = 1

m = 2

m = 3

m = 1

m = 0

m = 2

Component	Entities	Relations	Rel. inductive bias	Invariance
Fully connected	Units	All-to-all	Weak	-
Convolutional	Grid elements	Local	Locality	Spatial translation
Recurrent	Timesteps	Sequential	Sequentiality	Time translation
Graph network	Nodes	Edges	Arbitrary	Node, edge permutations