

Road Map

- Motivation
- Initial Studies
 - Invariant Mass Distribution Feature Comparison (all 2016 vs run 7800)
 - Even Ordered Polynomial Significance Comparison (bkg vs bkg+sig)
- Global Fitting Tool
 - creation and use
- Preliminary Results
 - chi2 probability as function of mass window minimum
- Next Steps

SLAC

SLAC

In 2016, HPS claims A' resonance search sensitivity from 39 MeV - 179 MeV

- May be able to increase reach for some or all of this range if "wiggles" in background shape can be better understood and "frozen"
 - two current hypothesis: systematic triggering or systematic features in the background model

Initial Studies

- Feature Comparison
 - recreated 2016 upper limit plots using provided IMD
 - recreated similar plots for Run 7800 for feature comparison, was necessary to generate the IMD for run
- Polynomial Significance
 - compared *even ordered* polynomial coefficient significance between
 2016 signal distribution to Signal+Background

SLAC

mass resolution systematics included

Current Format of Polynomials Fit to Background

In 2016, 3rd and 5th order Legendre polynomials were fit to different portions of the background in a variety of ranges or windows.

Coefficients for the polynomials are stored as:

$$\mathcal{P}(3) = \{P_0, P_1, P_2, P_3\}$$
$$\mathcal{P}(5) = \{P_0, P_1, P_2, P_3, P_4, P_5\}$$

$m_{A'}$	$\mathcal{O}(N)$	n_{σ}												
39	5	10	68	3	6	97	3	6	126	3	8	155	3	8
40	5	10	69	3	6	98	3	6	127	3	8	156	3	8
41	5	10	70	3	6	99	3	6	128	3	8	157	3	8
42	5	10	71	3	6	100	3	7	129	3	8	158	3	8
43	5	10	72	3	6	101	3	7	130	3	8	159	3	8
44	5	10	73	3	6	102	3	7	131	3	8	160	3	8
45	5	10	74	3	6	103	3	7	132	3	8	161	3	8
46	5	10	75	3	6	104	3	7	133	3	8	162	3	8
47	5	9	76	3	6	105	3	7	134	3	8	163	3	8
48	5	9	77	3	6	106	3	7	135	3	8	164	3	8
49	5	9	78	3	6	107	3	7	136	3	8	165	3	8
50	5	9	79	3	6	108	3	7	137	3	8	166	3	8
51	5	9	80	3	6	109	3	7	138	3	8	167	3	8
52	5	9	81	3	6	110	3	7	139	3	8	168	3	8
53	5	9	82	3	6	111	3	7	140	3	8	169	3	8
54	5	9	83	3	6	112	3	7	141	3	8	170	3	8
55	5	9	84	3	6	113	3	7	142	3	8	171	3	8
56	5	9	85	3	6	114	3	7	143	3	8	172	3	8
57	5	9	86	3	6	115	3	7	144	3	8	173	3	8
58	5	9	87	3	6	116	3	7	145	3	8	174	3	8
59	5	9	88	3	6	117	3	7	146	3	8	175	3	8
60	5	9	89	3	6	118	3	7	147	3	8	176	3	8
61	5	9	90	3	6	119	3	7	148	3	8	177	3	8
62	5	9	91	3	6	120	3	7	149	3	8	178	3	8
63	5	9	92	3	6	121	3	7	150	3	8	179	3	8
64	5	9	93	3	6	122	3	8	151	3	8	180	3	8
65	5	9	94	3	6	123	3	8	152	3	8			
66	5	9	95	3	6	124	3	8	153	3	8			
67	3	6	96	3	6	125	3	8	154	3	8			

From 2016 note: **insert link**

Even Ordered Polynomial Coefficient Significance Comparison

Notable Features

Global Fit to the Invariant Mass Distribution

- May be able to take into account systematic features present in background shape.
 - (ongoing) study a variety of functions to fit the distribution
 - will be useful then, to
 freeze these features as
 fittable features

$$\begin{split} f_{dijet1}(x) &= \frac{p_0(1-x)^{p_1}}{x^{p_2}} & f_{dijet2}(x) = \frac{p_0(1-x)^{p_1}}{x^{p_2+p_3\log(x)}} \\ f_{dijet3}(x) &= \frac{p_0(1-x)^{p_1}}{x^{p_2+p_3\log(x)+p_4\log^2(x)}} & f_{ATLAS1}(x) = \frac{p_0(1-x^{1/3})^{p_1}}{x^{p_2}} \\ f_{ATLAS2}(x) &= \frac{p_0(1-x^{1/3})^{p_1}}{x^{p_2+p_3\log^2(x)}} & f_{UA2_1}(x) = p_0x^{p_1}e^{p_2x} \\ f_{UA2_2}(x) &= p_0x^{p_1}e^{p_2x+p_3x^2} & f_{UA2_3}(x) = p_0x^{p_1}e^{p_2x+p_3x^2+p_4x^3} \\ f_{cmsBH1}(x) &= \frac{p_0(1+x)^{p_1}}{x^{p_2\log x}} & f_{cmsBH2}(x) = \frac{p_0(1+x)^{p_1}}{x^{p_3+p_2\log x}} \\ f_{ATLASBH1}(x) &= p_0(1-x)^{p_1}x^{p_2\log(x)} & f_{ATLASBH2}(x) = p_0(1-x)^{p_1}(1+x)^{p_2\log(x)} \\ f_{ATLASBH3}(x) &= p_0(1-x)^{p_1}e^{p_2\log(x)} & f_{ATLASBH4}(x) = p_0(1-x^{1/3})^{p_1}x^{p_2\log(x)} \\ f_{ATLASBH5}(x) &= p_0(1-x)^{p_1}x^{p_2x} & f_{ATLASBH6}(x) = p_0(1-x)^{p_1}(1+x)^{p_2x} \end{split}$$

C. Bravo. *Thesis link*

Global Fitting Tool

Plots Generated For Each Window

- 1. Best Fit of Specified Function on top of inv. mass dist.
- 2. Residual Plot of function and inv. mass dist.
- 3. Residual / $sqrt(N(m)) \leftarrow N(m) = number of events at specified mass, m$
- 4. Residual^2 / (N(m))
- 5. Pull Plot 1D Histogram

Plot(s) generated for each function

1. Chi2 Probability versus Minimum Window Used

Example Continued

Example fua23 chi2 probability compilation

Useful abstraction for determining range of good fits for each function

Chi2 Probability as function of Minimum Window

Poor Fit Example

-SLAC

Preliminary Fitting Results

Error function used: Chi2 Probability $\operatorname{Er}(x) = \frac{1}{2} \left(\operatorname{Erf}\left(\frac{(x - [q_0])}{[q_1]}\right) + 1 \right)$ prob_dj1_sum_g **Tested Functions** prob_dj1_single_mod_g $\operatorname{Er}(x) \cdot f_{\operatorname{dijet1}}(x) = \operatorname{Er}(x) \cdot rac{p_0(1-x)^{p_1}}{x^{p_2}}$ 10 prob_dj1_single_g prob_fua21_g prob_fua22_g single mod \checkmark Er $(x) \cdot \frac{p_0(p_3 - x)^{p_1}}{x^{p_2}}$ prob_fua23_g $h(x) = \operatorname{Er}_1(x) \cdot f_{\operatorname{dijet1}}(x) + \operatorname{Er}_2(x) \cdot g_{\operatorname{dijet1}}(x)$ 10⁻² $\operatorname{Er}(x) \cdot f_{\mathrm{UA21}} = \operatorname{Er}(x) \cdot \left(p_0 x^{p_1} e^{p_2 x} \right)$ \$100 nice \$100 $\operatorname{Er}(x) \cdot f_{\mathrm{UA22}} = \operatorname{Er}(x) \cdot \left(p_0 x^{p_1} e^{p_2 x + p_3 x^2} \right)$ 10⁻³ $\operatorname{Er}(x) \cdot f_{\mathrm{UA23}} = \operatorname{Er}(x) \cdot \left(p_0 x^{p_1} e^{p_2 x + p_3 x^2 + p_4 x^3} \right)^{2}$ 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 Fit Window Minimum (GeV)

Chi2 Probability as function of Minimum Window

-SLAC

- determine if a function can fit the entire distribution and continue working through list
 - may find that a function works well with slightly limited range (cut out 5-10 MeV from rise and tail)
 - if this is true, how much are we willing to sacrifice for an improved fit??
 - if none of the functions seem to fit the distribution to everyone's satisfaction, may make sense to <u>restrict the range</u> and vary the window of the window maximum while fixing win_min
 - maybe make 2D tool to illustrate functions on optimal win_min and win_max

Preliminary Preliminary Study - Fitting the Rise

Range: 30 MeV - 210 MeV

Range: 30 MeV - 110 MeV

Using Dijet Sum Function

SLAC

Additional Slides

Observed ∈²_{up}

Eup up

SLAC

Run 7800 invariant mass distribution

