V0 Analysis First Looks: Pass0 & 2019 New Detector

Norman Graf (SLAC) HPS Analysis Workshop April 12, 2023

V0 Analysis with Pass0 Data

- Analyze UnconstrainedV0Candidates_KF
 - \Box 0.1 < electron momentum < 6.8
 - positron momentum > 0.1
 - electron track >= 10 nHits
 - positron track >= 10 nHits
 - electron chisq/dof < 30.</p>
 - positron chisq/dof < 30.</p>

Track Delta Time 2019

Cluster Delta Time 2019

top cluster time - bottom cluster time both clusters

Track – Cluster Time (both clusters)

electron track time - cluster time both clusters

positron track time - cluster time both clusters

Track Momentum 2019

Electron vs Positron Momentum 2019

electron vs positron momentum

Psum 2019

V0 Vertex Positions 2019

x10⁶

1.4 -

1.2-

1.0-

0.8-

0.6-

0.4

0.2+

0.0+

-20

-15

-10

Entries : 7845504

v0 x vs y

V0 Vertex Momenta 2019

V0 Mass 2019

v0 mass

V0 Vertex Mass vs Vertex Z 2019

v0 mass vs Z vertex

Vertex Positions vs Run Number 2019

Track Delta Time 2021

Cluster Delta Time 2021

Track – Cluster Time (both clusters)

Track Momentum 2021

Electron vs Positron Momentum 2021

electron vs positron momentum

Psum 2021

V0 Vertex Positions 2021

v0 z x10⁶ Entries : 7896143 -1.2479 Mean: 1.2 T Rms : 3.5672

-5

0

5

10

-10

-15

1.1 -

1.0

0.9

0.8

0.7

0.6

0.5-

0.4

0.3

0.2-

0.1

0.0

-20

v0 x vs y

V0 Vertex Momenta 2021

V0 Mass 2021

v0 mass

V0 Vertex Mass vs Vertex Z 2021

v0 mass vs Z vertex

HPS_TimDesign_iter6

- Latest version of the 2019 detector introduced by PF yesterday.
- Process a single physics run with this detector
- Analyze V0s, compare to 2019 Pass0

Track Delta Time 10022

Cluster Delta Time 10022

Track – Cluster Time (both clusters)

electron track time - cluster time both clusters

positron track time - cluster time both clusters

Track Momentum 10022

Electron vs Positron Momentum 10022

electron vs positron momentum

Psum 10022

V0 Vertex Positions 10022

V0 Vertex Momenta 10022

V0 Mass 10022

v0 mass

V0 Vertex Mass vs Vertex Z 10022

v0 mass vs Z vertex

Pass0 vs Run 10022

- Care should be taken when comparing these plots
- Pass0 is averaged over the run conditions and trigger versions
- Run 10022 is a single run
- Nevertheless, interesting to compare

Psum

V0 Mass vs Vertex Z

Dude! Where's my target?

For first time, getting consistent estimates for the z position of the IP: -6.96, -7.12, -7.13

Vertex Positions vs Run Number 2021

Vertex Positions vs Run Number 2021

V0 Yield 2019

Largest surprise (to me) was the yield! Number of V0 candidates / total in pass0 run

V0 Yield 2021

Largest surprise (to me) was the yield! Number of V0 candidates / total in pass0 run

Summary

- Still have a long way to go to finalize detector calibration, but first look at V0s in Pass0 is not discouraging
- Latest 2019 detector shows definite improvements
 promising leads (e.g. module bowing) being pursued
- Will need to understand systematics as a function of run and populate database with run-specific IP positions, tracking efficiency, geometry(?), etc.
- Need to systematically study selection criteria and cuts
 - to eliminate backgrounds
 - current selection criteria are intentionally loose
 - to increase yield?