2019 SVT Alignment Status

12/04/2023

Introduction

Proposed new baseline for alignment for 2019

- Details of the new procedure, iterations and corrections: focus on transparent and complete documentation and motivations
- Comparison with the current FEE-based alignment in hps-java compact

Performance of 2019-baseline alignment

- Residuals (PF), some FEEs
- FEE and Vertexing (see Norman's talk)
- Study of distortions of the detector and their effects
 - Implementation of in-plane collective distortions (twists)
 - Study of out-of-plane distortions (telescope elongation, module separation, out-ofplane bowing)
- Move forward
 - What is missing and how to move forward
- Newly developed Tools
 - For monitoring and collective distortions.
 - Applications to Moellers for 2021

2019 Alignment performance - Unbiased Residuals

- Checked alignment solution quality by evaluating unbiased residuals distributions
- Mean linked to the residual position misalignment
- Large improvement in the newly placed thin-sensors
- Resolution to be improved to get closer to ideal geometry (from perfect MC)

2019 Alignment performance - Unbiased Residuals

2019 Detector performance - Vertexing

SLAC

2019 SVT Performance - Momentum Scale and Resolution

- Elastically beam scattered electrons are used to align the SVT with momentum scale constraint
 - Clean event selected by single high-energy cluster in calorimeter
 - Known track momentum for weak-mode suppression
 - Only one side of the detector illuminated:
 - Asymmetry detector halves alignment performance
 - Slot side momentum scale suffers of hole-on-track (one missing working layer for bottom)
- Momentum calibration for positrons/electrons is checked using E/p method

Brief reminder on current 2019 alignment performance

Followed up and improved p dependence from phi

Brief reminder on current 2019 alignment performance

Followed up and improved p dependence from phi

- Motivations for a new alignment procedure for 2019
 - Received multiple comments to use 2016-like procedure that led to acceptable performance in previous analysis
 - Using FEEs doesn't illuminate properly the slot side and led to poor performance in tracking in that region
 - Order of corrections lost during many iterations
 - Size of corrections of global structures large and un-expected

New starting point: HPS 2019 geometry design

- During several passes checking the geometry we found few inconsistencies between the geometry from HPS design and what was returned by the hps-java geometry classes
- Tim, some time ago, produced a full dump of the sensor x-y-z positions "as designed", available here

2019 Geometry Design

 2016 survey measurements are stored in the Pass-2 compact from 2016 analysis:

HPS-Physics2016-Pass2 compact

- I've created a new detector compact, called HPS_TimDesign_iter0 that matches the position of the sensors in 2019 Geometry to the design.
 - The orientation of the UChannels are taken from the 2016 compact (so top and bottom volumes are not exactly at 30.5 mrad) wrt beam axis

New starting point: HPS 2019 geometry design

 Additionally I've been requested to perform a check using 2016 alignment strategy

- I performed a new alignment pass without usage of external constraints (BS or momentum) and used only e+/etracks from run 10031
- Not easy to really apply the same procedure in 2019 so I kept 2 main ideas:
 - Keep fixed first and last sensor and align everything in between
 - Align the innermost sensors when the rest is fixed

					-	
test #	start from #	floats	Delta p (T-B) MeV/c	chi2 res top	chi2 res bot	mean chi2 tot
0			40	33.62	71.77	20.14
1	0	tu 3+4+5 T&B	81	11.01	31.97	7.9
2	0	tu 2+3+4+5 T&B	20	9.7	31.9	7.59
3	2	tu 3+4 T&B	3	3.58	8.14	2.44
4	3	tu+tw 3+4 T&B	7	2.76	2.62	1.37
5	4	ru+rv+rw 3+4 T&B	23	4	3.73	1.63
6	5	tu 2+3+4+5 T&B	30	3.75	7.92	2.88
7	5	tu+tw 3+4 T&B	38	3.34	2.77	1.83
8	0	tuw 4+tuw3+tuw 2 T&B 3 steps in row	101	351.7	422.3	150.8
9	0	as 8 curved tracks only	-			-
10	0	tuw 4TB + tuw 3 + 2 tuw T&B	95	13.8	20.96	8.78
11	0	tu 2+3+4+5 T&B curved only	101	41	7.95	11.4
12	4	tu 1+6 T&B	0	0.56	2.13	0.7
12F	4	" with new fieldmap	3	0.56	2.15	0.7
13	12	global alignment (check compact)	153			14.7
14	12	ru+rv+rw 3+4 T&B	9	0.59	4.17	1.06
15	14	tu 3+4 B + rurvrw 4HB	33	0.56	4.18	1.08
16	15	rurvrw 4H+5H B	33	0.56	2.77	0.86
17	15	ru+rv+rw 3+4H B	26	0.56	2.5	0.82
17F	15	" with new fieldmap	26	0.56	2.48	0.81
18	15	ru+rv+rw 3+4S B	30	0.56	0.57 8 dof	1.48
19	12	tw 4B new fieldmap	5	0.56	0.46	0.49
20	19	ru+rv+rw 4T hole+ 4B	10	0.56	0.99	0.49
21	20	d0, z0 global centering	1	1.86	1.35	0.73
22	21	d0, z0 global centering	5	1.88	1.36	0.74
23	22	tu+tw 1+2+3 T+B	6	0.61	0.86	0.46
24	23	d0, z0 global centering	6	0.57	0.73	0.43
25	24	1.1. 07.00	10	0.45	0.00	0.20

Alessandra's Talk in 2018

 The actual internal alignment corrections performed in 2016 seems to be described in the <u>2016</u> compact:
 This is an X correction and only for better

This is an X correction and only for bottom

Some caveats

- Tracing back the actual iterations that made their way in is not clear.
- The final constants seem to be relative to v31 (not present in the table)
- Stored in the 2016_Pass2_Compact
- Checks are ongoing to understand if 2016 dataset has been reconstructed with the constants in the database or in the compact.
- We can say that compact has the expected performance (and was consistently used for all comparison studies done in the past 3 years)

					-	
test #	start from #	floats	Delta p (T-B) MeV/c	chi2 res top	chi2 res bot	mean chi2 tot
0			40	33.62	71.77	20.14
1	0	tu 3+4+5 T&B	81	11.01	31.97	7.9
2	0	tu 2+3+4+5 T&B	20	9.7	31.9	7.59
3	2	tu 3+4 T&B	3	3.58	8.14	2.44
4	3	tu+tw 3+4 T&B	7	2.76	2.62	1.37
5	4	ru+rv+rw 3+4 T&B	23	4	3.73	1.63
6	5	tu 2+3+4+5 T&B	30	3.75	7.92	2.88
7	5	tu+tw 3+4 T&B	38	3.34	2.77	1.83
8	0	tuw 4+tuw3+tuw 2 T&B 3 steps in row	101	351.7	422.3	150.8
9	0	as 8 curved tracks only	-	-	-	-
10	0	tuw 4TB + tuw 3 + 2 tuw T&B	95	13.8	20.96	8.78
11	0	tu 2+3+4+5 T&B curved only	101	41	7.95	11.4
12	4	tu 1+6 T&B	0	0.56	2.13	0.7
12F	4	" with new fieldmap	3	0.56	2.15	0.7
13	12	global alignment (check compact)	153			14.7
14	12	ru+rv+rw 3+4 T&B	9	0.59	4.17	1.06
15	14	tu 3+4 B + rurvrw 4HB	33	0.56	4.18	1.08
16	15	rurvrw 4H+5H B	33	0.56	2.77	0.86
17	15	ru+rv+rw 3+4H B	26	0.56	2.5	0.82
17F	15	" with new fieldmap	26	0.56	2.48	0.81
18	15	ru+rv+rw 3+4S B	30	0.56	0.57 8 dof	1.48
19	12	tw 4B new fieldmap	5	0.56	0.46	0.49
20	19	ru+rv+rw 4T hole+ 4B	10	0.56	0.99	0.49
21	20	d0, z0 global centering	1	1.86	1.35	0.73
22	21	d0, z0 global centering	5	1.88	1.36	0.74
23	22	tu+tw 1+2+3 T+B	6	0.61	0.86	0.46
24	23	d0, z0 global centering	6	0.57	0.73	0.43
25	24	tu+tw 6T+6B	10	0.45	0.62	0.39

Alessandra's Talk in 2018

Starting point - Iter1 + Iter2

- First 2 iterations aligned Tu of the modules (axial+stereo) pairs
- I kept fixed L1A+S and L7A+S to provide the global Y scale of the volumes
 - For top L7S only
- Mostly fixes the lambda-kinks
 - To be checked again opening angle
- I used e+/e- pairs, no constraints, only chi2 alignment
- Iter2 is another iteration of these DoFs (~um level corrections)

<pre>module_L2t_fullmodule</pre>	0.027033 +-	0.000067	11162
<pre>module_L3t_fullmodule</pre>	0.089035 +-	0.000155	11163
<pre>module_L4t_fullmodule</pre>	0.053068 +-	0.000211	11164
<pre>module_L5t_fullmodule</pre>	0.093002 +-	0.000258	11165
<pre>module_L6t_fullmodule</pre>	0.005489 +-	0.000254	11166
<pre>module_L2b_fullmodule</pre>	-0.077149 +-	0.000074	21162
<pre>module_L3b_fullmodule</pre>	-0.005823 +-	0.000168	21163
<pre>module_L4b_fullmodule</pre>	-0.021870 +-	0.000221	21164
<pre>module_L5b_fullmodule</pre>	-0.100210 +-	0.000255	21165
<pre>module_L6b_fullmodule</pre>	-0.065507 +-	0.000217	21166

• Observed large rotation in L2Top sensor and somewhat different L1Top rotation - Why?

- Slope also present when L1 is removed
- It cannot be a full module Rw as previously suggested:
 - Opposite slopes for Stereo and Axial in that case
 - Tested on ideal MC + 10mrad Rw of M2T module

2019 corrections. Stereo sensor ~ 8-10mrad rotation

Iter3

- The beam-spot location at Iter2 is close to 0-0 in X-Y
- Correcting the Rw of the stereo sensors doesn't move the beam-spot much in transverse plane but has large effect in Z
- Keep L1 fixed and align tu of the Axial and Stereo for L2-3-4-5
 - Similar to 2016 pass
 - Could not align L6 at the same time because of weak mode
 - L5 Axial and Stereo is aligned at double-sensor level

Iter3 Details

<pre>module_L2t_halfmodule_axial</pre>	-0.017278 +-	0.000064 11103	(change	-0.017278)
<pre>module_L2t_halfmodule_stereo</pre>	0.029812 +-	0.000070 11104	(change	0.029812)
<pre>module_L3t_halfmodule_axial</pre>	0.000110 +-	0.000123 11105	(change	0.000110)
<pre>module_L3t_halfmodule_stereo</pre>	-0.027430 +-	0.000143 11106	(change	-0.027430)
<pre>module_L4t_halfmodule_axial</pre>	-0.000882 +-	0.000150 11107	(change	-0.000882)
<pre>module_L4t_halfmodule_stereo</pre>	-0.041955 +-	0.000178 11108	(change	-0.041955)
<pre>doublesensor_axial_L5_top</pre>	0.014500 +-	0.000123 11171	(change	0.014500)
doublesensor_stereo_L5_top	-0.009749 +-	0.000129 11172	(change	-0.009749)
<pre>module_L2b_halfmodule_stereo</pre>	-0.012576 +-	0.000076 21103	(change	-0.012576)
<pre>module_L2b_halfmodule_axial</pre>	-0.010649 +-	0.000072 21104	(change	-0.010649)
<pre>module_L3b_halfmodule_stereo</pre>	0.073986 +-	0.000146 21105	(change	0.073986)
<pre>module_L3b_halfmodule_axial</pre>	0.027108 +-	0.000136 21106	(change	0.027108)
<pre>module_L4b_halfmodule_stereo</pre>	0.080968 +-	0.000180 21107	(change	0.080968)
<pre>module_L4b_halfmodule_axial</pre>	0.041723 +-	0.000162 21108	(change	0.041723)
<pre>doublesensor_axial_L5_bot</pre>	-0.011886 +-	0.000145 21171	(change	-0.011886)
doublesensor_stereo_L5_bot	-0.015878 +-	0.000147 21172	(change	-0.015878)

- Largest corrections are for Ly3 and Ly4 Stereo in bottom volume:
 - 74 and 81um respectively
- Majority of corrections are between 10-30um at this stage

At this point correct for innermost sensors.

- Corrected L1-L2
 - Tu and Rw
- Kept the rest of the detector fixed

<pre>module_L1t_halfmodule_axial</pre>	0.003546 +-	0.000144 11101
<pre>module_L1t_halfmodule_stereo</pre>	-0.015911 +-	0.000142 11102
<pre>module_L2t_halfmodule_axial</pre>	-0.016434 +-	0.000092 11103
<pre>module_L2t_halfmodule_stereo</pre>	0.008687 +-	0.000093 11104
<pre>module_L1t_halfmodule_axial</pre>	0.006074 +-	0.000085 12301
<pre>module_L1t_halfmodule_stereo</pre>	0.008630 +-	0.000074 12302
<pre>module_L2t_halfmodule_axial</pre>	0.008560 +-	0.000025 12303
<pre>module_L2t_halfmodule_stereo</pre>	0.009370 +-	0.000024 12304
<pre>module_L1b_halfmodule_stereo</pre>	0.072912 +-	0.000157 21101
<pre>module_L1b_halfmodule_axial</pre>	-0.037993 +-	0.000152 21102
<pre>module_L2b_halfmodule_stereo</pre>	0.056571 +-	0.000106 21103
<pre>module_L2b_halfmodule_axial</pre>	-0.049155 +-	0.000102 21104
<pre>module_L1b_halfmodule_stereo</pre>	0.007146 +-	0.000076 22301
<pre>module_L1b_halfmodule_axial</pre>	0.001001 +-	0.000065 22302
<pre>module_L2b_halfmodule_stereo</pre>	0.011262 +-	0.000028 22303
<pre>module_L2b_halfmodule_axial</pre>	-0.004122 +-	0.000025 22304

- Rotations (in bold) of the stereo sensors are of the order of 10mrad
 - In agreement with what extracted from MC studies.
- Translations are maximum 55um (for L2b Stereo)
 - Notice how L2b stereo moves together with axial: it is actually 50um movement of a full module in Y

Final iterations and Summary

 At this point, 2 more iterations are performed to finish aligning the detector in Tu and Rw

SLA

- Iter5 is an iteration of the back of the detector as double sensors:
 L5-L6-L7 Top Double sensors Tu + Rw
- Iter6 is an iteration aimed to align most of the left over alignment DoF L3-L4 AS L5AS-HS L6AS-HS Tu+Rw

	Free	DoF	Comment
lter1	M2-M3-M4-M5-M6	Tu	Full modules
Iter2	M2-M3-M4-M5-M6	Tu	Full modules
lter3	L2AS-L3AS-L4AS- D5AS	Tu	Front sensors and L5 double sensors
lter4	L1AS-L2AS	Tu+Rw	Innermost sensors
lter5	D5AS-D6AS-D7AS	Tu+Rw	Back as double sensors
lter6	L3-L4-L5-L6	Tu+Rw	Front (L3-L4) and back as single sensors

Brief performance snapshot (more from Norman)

—SLAC

 Some work should be done still for the back of the detector. However last corrections with just Chi2 minimization are small (um level)

Brief performance snapshot (more from Norman)

- A different alignment procedure with e+e- tracks, no external constraints and no global structure alignment produce momentum shapes as function of tanLambda very similar between the two runs
- In the bottom the step <-0.06 is due to the transition from having hit in ly7 or not
- Any of these procedures doesn't cure the tanL dependence

Brief performance snapshot (more from Norman)

- The track dependence wrt phi is similar in bottom volume, slightly worse in top
- That can be corrected using constraints (as shown in the Red points showing the 2019 alignment in the current hps-java version)
- Correcting the phi dependence doesn't have a sizable impact on p vs tanL

- My ongoing goal is to understand what misalignments can affect
 - Momentum distributions: I do not see a clear path using tu-rw to correct for the momentum distributions in 2019.
 - Discrepancy between z0_tanL and 3D-Vertexing in bottom volume
 - Discrepancy between top and bottom volume vertex location in Z

SL AO

- My ongoing goal is to understand what misalignments can affect
 - Momentum distributions: I do not see a clear path using tu-rw to correct for the momentum distributions in 2019.
 - Discrepancy between z0_tanL and 3D-Vertexing in bottom volume
 - Discrepancy between top and bottom volume vertex location in Z

- Studied some collective movements (Twists)
- And out of plane distortions (telescope elongations, see Sarah's talk)
- Possible bowing, studied with residuals as function of u-v position on the sensor

SLA0

- Implemented as rotation of modules with respect to the beam axis
 - This development is also useful to insert rolls of the detector with respect to the beam axis to correct Norman's observation in Moeller events

Effects

-SLAC

- Required twist for appreciable p vs tanL in FEEs: 5e-5
- This means O(30mrad) Rw and O(mm) of Tu of the back layers
 - Considered too large
- Also tested effect on only Stereo sensors with not appreciable change
 - I do not think that a twist (alone) can account for this effect

Out of plane distortions

- Out of plane distortions can give res-u vs u linear shapes
- If one plots the residuals vs tanLambda, then $\Delta_u = \tan \lambda \cdot T_z$, so the slope of that shape is the inferred Tz correction to be applied
- Additionally, if we assume that there is no Tz of the modules, then we can interpret those shapes under a global $\tan \lambda$ correction
- These effect are present in 2019 dataset, largely independent between PR and FEE runs, not dependent on the alignment procedure so far
- The inferred corrections are of the order of 1-2mm in Tz: expected to be too large

SL AO

Out of plane distortions - PR/FEE Iter6 and FEE 2019

29

Out of plane distortions - PR/FEE Iter6 and FEE 2019 SLAC Example of Tz Real position effect on residuals Measurement Prediction Assumed position If stereo u fit position depend 6 p [GeV] on tanLambda, there is a bias HPS Work In Progress 5 in global-X of the hit depends on tanl in the track fit 4 If this happens in the back of 3 the detector there is a bias in 2 curvature as function of 1 er6 6.3215.-45.5697 tanL=> momentum that 0 depends on tanLambda 0.1 0.02 0.06 0.08 0 0.04 30 $tan(\lambda)$

Out of plane distortions: looking as maps

 Computed the residuals in bins of u-v using e+/e- tracks

- Arranged the shape as a double sensor
- We can see a "bulge" in the center of the sensor and less distortion on the side of the sensors
- Possible bowing of the double sensors: 1-2mm could be possible.

Out of plane distortions: looking as maps

- It could be a bulge of the sensor in the central region
- The sides would be at Tz=0 due to the fixation at the hybrids
- 1mm plausible over a 200mm double sensor
- This can affect modules in different way
- It can be time dependent:
 - No effect in 2016 as "fresh" modules but can affect 2019/2021 after years of operation
 - Modules are swapped, they can affect 2019-2021 differently
- First ideas:
 - O(0) correction, simple Tz
 - O(1) correction, Ry + Tz
 - O(2) correction, apply Δu from residual maps as function of u/v

SL AC

Iter7 - Correcting Tzs

- The only correction I found that fixes p vs tanL and the residuals vs tanL is allowing Tz to be aligned
- While before the corrections were considered too large, with a bowing hypothesis we could think about a Tz+Ry and have a first order correction.
- At second order we can apply the corrections extracted from the residual maps

- Re-derived corrections for 2019 detector using a 2016-like procedure
 - Simpler, more compact and gives similar performance results
 - Norman will give a better overview
- Reported *in full* the steps and corrections applied to avoid future confusion
 - It's not fully completed as there are still some corrections that can be done with external constraints
- Concentrating on momentum biases on the top volume
 - I am able to interpret the biases as out-of-plane distortions of some form
 - Tried to interpret as correlated distortions without success
 - Machinery still useful for global corrections given observations in Moellers by Norman.
- A bowing of the back sensors could explain the magnitude of the necessary corrections as well as time-dependence, "random placing" due to module swapping and different performances
- At first order could be corrected with an Ry + Tz at the hybrid location, (if the bulge is not too steep in the center)

New tool: rootjna

- I wrote a new tool, rootjna <u>https://github.com/pbutti/rootjna</u>
- This tool contains the C wrappers to call via java JNA basic root functionalities
 - Open / Close TFiles
 - Fill, store, retrieve and get content of TH1D, TH2D, TH3D
- The tool can be written better, I only care about the functionality.
 - Happy if a student is willing to improve it.
- I wrote the java classes in the gbl package

• This is not a sw proposal, I'm just saying what I did

Status

- Started from the detector HPS_TimDesign_iter4
 - Extensive detail of the detector + corrections can be found in the talk at the SLAC Meeting on the 22Nov2022.
 - The slides are attached here in backup as well.
- Used 10104 FEEs
- New driver <u>RootMapsDriver.java</u> to only produce these maps on top of FinalStateParticles

Status

- Maps are fit with a CrystalBall in each bin
 - An iterative gauss fit in +/-2 sigma from mu gives very similar results
- Interesting diagonal trend in the top volume in E/p

SLAO

Refit tracks with E/p maps constraints

- Closure test on the machinery is done by loading the map in hps-java
- Refitting the track using the constraint from previous iteration map
- This method should work fine to constrain tracks for electrons and positrons
- It's important to have the correct Energy of the calorimeter

Original

Refit with constraint

1.3

1.2

1.1

0.9

0.8

0.7

0.12

Effects on other track parameters

-SLAC

39

- Track parameters are correlated. Especially bending plane
- Top d0 distribution flat vs tanL (expected) before constrain
 - Trend in tanL is "passed" to impact parameter

d0 [mm]

Residuals

SLAC

 We can also monitor the unbiased residuals on the refitted tracks as well as the kinks

- The trends are present in similar form in both the tracks found with and without L1top
 Slope also present when L1 is removed
 It cannot be a full module Rw as previously 0
 suggested:
 - Opposite slopes for Stereo and Axial in that case
 - Tested on ideal MC + 10mrad Rw of M2T module

TOP L1/L2

 The module rotation misalignment has been applied to the module defined as center of mass of the axial-stereo pair

- Notice how the mean of the unbiased residuals are only very mildly affected (*) - expected
 - In the plot below, blue is the misaligned MC with only
 ~3um displacement of the mean
 - (*) A small displacement is due to the fact that the Module center of mass is not in the pivot of the single sensor rotations

- Studied the effect of rotating the single sides by 10mrad
 - Rotations are now applied to Axial and Stereo sensors separately

- Mean of the residuals not affected
- Only resolution affected

- Studied the effect of rotating the single sides by 10mrad
- Single side rotation has a reflection effect on the opposite side
- The reflection emulates a ~10 smaller rotation on the other side of the module
- In data, we see a slope in the same direction.
 - Axial and Stereo are rotated by the similar amount around their w axes => cannot be a single side rotation only

Study of the innermost sensors Rw - L1L2 coupling

SLAC

L2t Stereo -v predicted [mm]

Study of the innermost sensors Rw - L2L3 coupling

-SLAC

Inserting 10mrad Rw in IDEAL MC - Good modeling L1L2

 Check on IDEAL MC + misalignment L1A/S and L2A/S 10mrad Rw 0.1 Offsets due to missing single sensors Tu HPS Work I HPS Work In Peopress 0.08 0.06 0.06 0.04 0.04 0.02 0.02 0 0 -0.02 -0.02 -0.04 -0.04 -0.06 -0.06 -0.08 -0.08 -0.1 -0.1 -8 -2 2 6 8 10 -10 -6 -4 0 4 -15 -10 10 -5 0 5 15 L1t Axial - v predicted [mm] L2t Axial -v predicted [mm] 0.1 Offsets due to missing single sensors Tu In Progress HPS Work HPS Work In 0.08

Inserting 10mrad Rw in IDEAL MC - Good modeling L3L4

SLAC

• Check on IDEAL MC + misalignment L1A/S and L2A/S 10mrad Rw

- Ideal + L1L2 Rw rotation misalignment of 10mrad reproduces well the data
- Analysis of effects on Ly3 and Ly4 corroborates that most of the rotation effect is in the innermost layers only
- Running single iteration MPII with 6 hits on tracks finds about 9mrad for the stereo and between the 5-8mrad in the axial
 - Subito mode: not precise

module_L1t_halfmodule_axial	0.010403	+-	0.000144	11101
<pre>module_L1t_halfmodule_stereo</pre>	-0.022224	+-	0.000142	11102
module_L2t_halfmodule_axial	-0.011726	+-	0.000092	11103
<pre>module_L2t_halfmodule_stereo</pre>	0.001439	+-	0.000093	11104
module_L1t_halfmodule_axial	0.004811	+-	0.000085	12301
<pre>module_L1t_halfmodule_stereo</pre>	0.009504	+-	0.000074	12302
<pre>module_L2t_halfmodule_axial</pre>	0.007905	+-	0.000025	12303
<pre>module_L2t_halfmodule_stereo</pre>	0.009370	+-	0.000024	12304

- Finding the same rotations in L1 and L2 makes sense:
 - Modules are built with the same frame
- Bottom sensors show similar distortions
 - Different order of the layers might change a bit the effects

Study of the innermost sensors Rw - Bottom

-SLAC

- Check on IDEAL MC + misalignment L1A/S and L2A/S 10mrad Rw (Red)
- Added misalignment with 10mrad Rw only for Stereo sensors (Blue)

- Check on IDEAL MC + misalignment L1A/S and L2A/S 10mrad Rw (Red) -> Axial rotation too large on Ly3b
- Added misalignment with 10mrad Rw only for Stereo sensors (Blue)

Full MPII solution

- I think a rotation of ~10mrad of stereo angle, consistent across all the innermost layers (top and bottom) is real
 - Sytematically correlated because of same mounting frame
- Axial sensor rotations do not have a consistent rotation between top and bottom
 - From MC misalignment analysis is expected to be of few mrad only

I performed a MPII alignment of the innermost sensors only in Tu / Rw and found similar results

<pre>module_L1t_halfmodule_axial</pre>	0.003546 +-	0.000144	1110
<pre>module_L1t_halfmodule_stereo</pre>	-0.015911 +-	0.000142	11102
<pre>module_L2t_halfmodule_axial</pre>	-0.016434 +-	0.000092	11103
<pre>module_L2t_halfmodule_stereo</pre>	0.008687 +-	0.000093	11104
<pre>module_L1t_halfmodule_axial</pre>	0.006074 +-	0.000085	1230
<pre>module_L1t_halfmodule_stereo</pre>	0.008630 +-	0.000074	12302
<pre>module_L2t_halfmodule_axial</pre>	0.008560 +-	0.000025	12303
<pre>module_L2t_halfmodule_stereo</pre>	0.009370 +-	0.000024	12304
<pre>module_L1b_halfmodule_stereo</pre>	0.072912 +-	0.000157	2110
<pre>module_L1b_halfmodule_axial</pre>	-0.037993 +-	0.000152	21102
<pre>module_L2b_halfmodule_stereo</pre>	0.056571 +-	0.000106	21103
<pre>module_L2b_halfmodule_axial</pre>	-0.049155 +-	0.000102	21104
<pre>module_L1b_halfmodule_stereo</pre>	0.007146 +-	0.000076	2230
<pre>module_L1b_halfmodule_axial</pre>	0.001001 +-	0.000065	22302
<pre>module_L2b_halfmodule_stereo</pre>	0.011262 +-	0.000028	22303
module L2b halfmodule axial	-0.004122 +-	0.000025	22304

Checking the performance on FEE sample too

Beamspot in split - FEEs

- Without the usage of beamspot constraint we can get the X-Y location of the beam-spot to agree between top and bottom in FEEs
- Z distributions are also within 200um between top and bottom
 - Better with respect to the other iteration
 - Probably due to more careful corrections of the Rws of innermost sensors (large impact on z location of Vtx)

Momentum in split Fee

- No smoking gun here: the tanL dependence is still present in the same form and shape with same substructures.
 - Not surprising as the DoF aligned won't fix this problem
- Difference in scale can be fixed with momentum constraint
- At this point only minor differences in procedure are present in 2019 and 2016
 - Only last major difference is missing ly7 for 2019

Momentum in split Fee - bottom volume

- I re-ran track finding and reconstruction on FEEs removing the last layer in bottom volume
 - This is to mimic the absence Ly7 in the top volume
 - We can observe that a p vs tanL slope in the reconstructed dataset without Ly7 appears with the same alignment constants
- I believe that part of the issue we see in 2019 slope is due to the lack of measurement in the last layer.

 $\pm \alpha (1)$

Summary

- I re-ran some of the alignment passes using a strategy close to 2016
 - No external constraints
 - Similar passes used in 2016, with some adaptations to 2019 data
 - Used "perfect" design geometry + orientations of the UChannels coming from Survey measurements
- Found:
 - Most of the Z of the vertex in PR comes from fixing the rotations of the innermost sensors
 - Seem to be O(5-10mrad) rotations of the stereo innermost sensors that need to be corrected
 - Possible to have a Beamspot close to (0,0) in the transverse plane without the need of a 1mm correction that was inserted in 2016 (after all doesn't seem to really matter)
 - Very similar momentum performance for FEEs observed in top and bottom volume
 - Same shapes of momentum vs tanL even if following a much different strategy.
 - Removing Ly7b hits introduces a visible slope in pvsTanL in the bottom volume too

Iter1+2 corrections

<pre>module_L2t_fullmodule</pre>	0.027033 +-	0.000067	11162
<pre>module_L3t_fullmodule</pre>	0.089035 +-	0.000155	11163
<pre>module_L4t_fullmodule</pre>	0.053068 +-	0.000211	11164
<pre>module_L5t_fullmodule</pre>	0.093002 +-	0.000258	11165
<pre>module_L6t_fullmodule</pre>	0.005489 +-	0.000254	11166
<pre>module_L2b_fullmodule</pre>	-0.077149 +-	0.000074	21162
<pre>module_L3b_fullmodule</pre>	-0.005823 +-	0.000168	21163
<pre>module_L4b_fullmodule</pre>	-0.021870 +-	0.000221	21164
module_L5b_fullmodule	-0.100210 +-	0.000255	21165
module_L6b_fullmodule	-0.065507 +-	0.000217	21166

Iter2 not reported here but is an iteration of module level TUs => um movements so basically stable

Iter3 corrections

<pre>module_L2t_halfmodule_axial</pre>	-0.017278 +-	0.000064 11103	(change	-0.017278)
<pre>module_L2t_halfmodule_stereo</pre>	0.029812 +-	0.000070 11104	(change	0.029812)
<pre>module_L3t_halfmodule_axial</pre>	0.000110 +-	0.000123 11105	(change	0.000110)
<pre>module_L3t_halfmodule_stereo</pre>	-0.027430 +-	0.000143 11106	(change	-0.027430)
<pre>module_L4t_halfmodule_axial</pre>	-0.000882 +-	0.000150 11107	(change	-0.000882)
<pre>module_L4t_halfmodule_stereo</pre>	-0.041955 +-	0.000178 11108	(change	-0.041955)
<pre>doublesensor_axial_L5_top</pre>	0.014500 +-	0.000123 11171	(change	0.014500)
<pre>doublesensor_stereo_L5_top</pre>	-0.009749 +-	0.000129 11172	(change	-0.009749)
<pre>module_L2b_halfmodule_stereo</pre>	-0.012576 +-	0.000076 21103	(change	-0.012576)
<pre>module_L2b_halfmodule_axial</pre>	-0.010649 +-	0.000072 21104	(change	-0.010649)
<pre>module_L3b_halfmodule_stereo</pre>	0.073986 +-	0.000146 21105	(change	0.073986)
<pre>module_L3b_halfmodule_axial</pre>	0.027108 +-	0.000136 21106	(change	0.027108)
<pre>module_L4b_halfmodule_stereo</pre>	0.080968 +-	0.000180 21107	(change	0.080968)
<pre>module_L4b_halfmodule_axial</pre>	0.041723 +-	0.000162 21108	(change	0.041723)
<pre>doublesensor_axial_L5_bot</pre>	-0.011886 +-	0.000145 21171	(change	-0.011886)
doublesensor stereo L5 bot	-0.015878 +-	0.000147 21172	(change	-0.015878)

Iter4 corrections

-SLAC

<pre>module_L1t_halfmodule_axial</pre>	0.003546 +-	0.000144	11101
<pre>module_L1t_halfmodule_stereo</pre>	-0.015911 +-	0.000142	11102
<pre>module_L2t_halfmodule_axial</pre>	-0.016434 +-	0.000092	11103
<pre>module_L2t_halfmodule_stereo</pre>	0.008687 +-	0.000093	11104
<pre>module_L1t_halfmodule_axial</pre>	0.006074 +-	0.000085	12301
<pre>module_L1t_halfmodule_stereo</pre>	0.008630 +-	0.000074	12302
<pre>module_L2t_halfmodule_axial</pre>	0.008560 +-	0.000025	12303
<pre>module_L2t_halfmodule_stereo</pre>	0.009370 +-	0.000024	12304
<pre>module_L1b_halfmodule_stereo</pre>	0.072912 +-	0.000157	21101
<pre>module_L1b_halfmodule_axial</pre>	-0.037993 +-	0.000152	21102
<pre>module_L2b_halfmodule_stereo</pre>	0.056571 +-	0.000106	21103
<pre>module_L2b_halfmodule_axial</pre>	-0.049155 +-	0.000102	21104
<pre>module_L1b_halfmodule_stereo</pre>	0.007146 +-	0.000076	22301
<pre>module_L1b_halfmodule_axial</pre>	0.001001 +-	0.000065	22302
<pre>module_L2b_halfmodule_stereo</pre>	0.011262 +-	0.000028	22303
<pre>module_L2b_halfmodule_axial</pre>	-0.004122 +-	0.000025	22304

Iter5 corrections

0.000083 11171 (change doublesensor axial L5 top -0.003342 +--0.003342) doublesensor stereo L5 top 0.009833 + -0.000087 11172 (change 0.009833)doublesensor axial L6 top -0.005086 +-0.000183 11173 (change -0.005086) doublesensor stereo L6 top 0.017448 +-0.000204 11174 (change 0.0174480.038751 +doublesensor axial L7 top 0.000474 11175 (change 0.038751doublesensor stereo L7 top 0.019724 +-0.000521 11176 (change 0.019724)doublesensor axial L5 top 0.000053 +-0.000001 12371 (change 0.000053)doublesensor stereo L5 top -0.000163 +-0.000001 12372 (change -0.000163) doublesensor axial L6 top 0.000002 12373 0.000070 +-(change 0.00070)doublesensor stereo L6 top -0.000077 + -0.000002 12374 (change -0.000077) doublesensor_axial L7 top 0.001095 +-0.000007 12375 (change 0.001095)0.000007 12376 doublesensor stereo L7 top 0.000099 + -(change 0.000099doublesensor axial L5 bot -0.015013 +-0.000302 21171 (change -0.015013) doublesensor stereo L5 bot -0.003758 +-0.000306 21172 (change -0.003758) doublesensor axial L6 bot -0.021399 +-0.000072 21173 (change -0.021399) doublesensor stereo L6 bot 0.018069 +-0.000072 21174 0.018069(change doublesensor axial L5 bot 0.000106 +-0.000004 22371 (change 0.000106)doublesensor stereo L5 bot 0.000087 +-0.000004 22372 (change 0.00087doublesensor axial_L6_bot 0.000001 22373 0.000158 +-(change 0.000158) doublesensor stereo L6 bot -0.000181 +-0.000001 22374 (change -0.000181)

Iter6 Corrections

				S	
module L3t halfmodule axial	0.002008 +-	0.000070 11105	(change	0.002008)	
module L3t halfmodule stereo	0.002266 +-	0.000095 11106	(change	0.002266)	
module L4t halfmodule axial	0.001778 +-	0.000098 11107	(change	0.001778)	
module L4t halfmodule stereo	0.004298 +-	0.000144 11108	(change	0.004298)	
module L5t halfmodule axial hole	-0.001939 +-	0.000216 11109	(change	-0.001939)	
module L5t halfmodule stereo hole	0.004565 +-	0.000214 11110	(change	0.004565)	
<pre>module_L5t_halfmodule_axial_slot</pre>	-0.009324 +-	0.000264 11111	(change	-0.009324)	
<pre>module_L5t_halfmodule_stereo_slot</pre>	0.002079 +-	0.000258 11112	(change	0.002079)	
<pre>module_L6t_halfmodule_axial_slot</pre>	-0.002096 +-	0.000188 11115	(change	-0.002096)	
<pre>module_L6t_halfmodule_stereo_slot</pre>	-0.000999 +-	0.000187 11116	(change	-0.000999)	
<pre>module_L5t_halfmodule_axial_hole</pre>	0.000031 +-	0.000006 12309	(change	0.000031)	
<pre>module_L5t_halfmodule_stereo_hole</pre>	-0.000065 +-	0.000006 12310	(change	-0 . 000065)	
<pre>module_L5t_halfmodule_axial_slot</pre>	0.000243 +-	0.000008 12311	(change	0.000243)	
<pre>module_L5t_halfmodule_stereo_slot</pre>	-0.000163 +-	0.000008 12312	(change	-0.000163)	
<pre>module_L6t_halfmodule_axial_slot</pre>	0.000079 +-	0.000008 12315	(change	0.000079)	
<pre>module_L6t_halfmodule_stereo_slot</pre>	-0.000138 +-	0.000008 12316	(change	-0.000138)	
<pre>module_L3b_halfmodule_stereo</pre>	0.000442 +-	0.000107 21105	(change	0.000442)	
<pre>module_L3b_halfmodule_axial</pre>	-0.003287 +-	0.000076 21106	(change	-0 . 003287)	
<pre>module_L4b_halfmodule_stereo</pre>	0.004427 +-	0.000169 21107	(change	0.004427)	
<pre>module_L4b_halfmodule_axial</pre>	-0.006425 +-	0.000114 21108	(change	-0 . 006425)	
<pre>module_L5b_halfmodule_stereo_hole</pre>	0.002272 +-	0.000352 21109	(change	0.002272)	
<pre>module_L5b_halfmodule_axial_hole</pre>	0.006835 +-	0.000344 21110	(change	0.006835)	
<pre>module_L6b_halfmodule_stereo_hole</pre>	0.001592 +-	0.000272 21113	(change	0.001592)	
<pre>module_L6b_halfmodule_axial_hole</pre>	0.007406 +-	0.000264 21114	(change	0.007406)	
<pre>module_L6b_halfmodule_stereo_slot</pre>	-0.010130 +-	0.000229 21115	(change	-0.010130)	
<pre>module_L6b_halfmodule_axial_slot</pre>	0.012797 +-	0.000220 21116	(change	0.012797)	
<pre>module_L5b_halfmodule_stereo_hole</pre>	0.000086 +-	0.000009 22309	(change	0.000086)	
module_L5b_halfmodule_axial_hole	-0.000418 +-	0.000009 22310	(change	-0.000418)	
module_L6b_halfmodule_stereo_hole	0.000054 +-	0.000009 22313	(change	0.000054)	
module_L6b_halfmodule_axial_hole	-0.000708 +-	0.000009 22314	(change	-0.000708)	_
<pre>module_L6b_haltmodule_stereo_slot</pre>	0.000511 +-	0.000012 22315	(change	0.000511)	65
<pre>module_L6b_halfmodule_axial_slot</pre>	-0.000629 +-	0.000011 22316	(change	-0.000629)	

65

SVT Performance TOP - Possible to improve via Tz ?

- This iteration
 - Fixes ures vs u/v dependence in large amount
 - Fixes PvsTanLambda
 - Keeps the BC at 0,0 in x/y with internal constraint at -6.9 mm
 - Fixes hole/slot dependence on momentum
 - Worth pursuing further? Combine with lower momenta tracks with more curvature?

11117 module_L7t_halfmodule_axial_hole
11118 module_L7t_halfmodule_stereo_hole
11119 module_L7t_halfmodule_axial_slot
11120 module_L7t_halfmodule_stereo_slot

11117 module_L7t_halfmodule_axial_hole
11118 module_L7t_halfmodule_stereo_hole
11119 module_L7t_halfmodule_axial_slot
11120 module_L7t_halfmodule_stereo_slot

11117 module_L7t_halfmodule_axial_hole
11118 module_L7t_halfmodule_stereo_hole
11119 module_L7t_halfmodule_axial_slot
11120 module_L7t_halfmodule_stereo_slot

<millepede_constant name="12317" value="-0.089200
<millepede_constant name="12318" value="+0.089200
<millepede_constant name="12319" value="- 0.089200
<millepede_constant name="12320" value="+0.089200</pre>

