

A Modular Approach for Liquid Argon Time Projection Chambers

Fundamental Physics Directorate Seminar at SLAC

> Roman Berner March 14th 2023

→ Physical laws different for matter and antimatter (i.e. broken CP symmetry)

→ Physical laws different for matter and antimatter (i.e. broken CP symmetry)

Neutrinos might break the CP symmetry → Key to understand the observed matter – antimatter asymmetry? 0. Neutrino Physics (in a Nut-Shell)

Neutrinos

- Elementary particles that come in three flavors: v_e, v_u, v_t
- Electrically uncharged particles that only interact weakly
 → difficult to detect
- Can undergo flavor changes / neutrino oscillations → non-zero mass (but tiny...)
- Neutrino oscillations might reveal possible CP violations

Neutrinos

- Elementary particles that come in three flavors: $v_e^{}$, $v_{\mu}^{}$, $v_{\tau}^{}$
- Electrically uncharged particles that only interact weakly
 → difficult to detect
- Can undergo flavor changes / neutrino oscillations → non-zero mass (but tiny...)
- Neutrino oscillations might reveal possible CP violations

Open Questions*

- How much, if at all, do neutrinos violate CP symmetry?
- What is the ordering of the neutrino masses?
- What are the absolute neutrino masses?
- Are neutrinos Dirac or Majorana particles?
- Are there massive sterile neutrinos?

Neutrino Mixing Model

The U_{PMNS} mixing matrix contains information about the oscillation phenomenon

Three-Flavour Neutrino Mixing

3 mixing angles: 2 Majorana phases: 1 Dirac phase:

 $\begin{array}{l} \theta_{12} \approx 32.0^{\circ}; \theta_{13} \approx 8.5^{\circ}; \theta_{23} \approx 43.5^{\circ} \\ \textbf{a}, \beta \approx \dots ? \text{ (decoupled from oscillation experiments)} \\ \delta_{CP} \approx \dots ? \end{array}$

- 0. Neutrino Physics (in a Nut-Shell)
- 1. The Deep Underground Neutrino Experiment (DUNE)

* See Appendix B

- Primary physics goals*: $\delta_{_{CP}}$ and v mass ordering
- v or v beam from Fermilab to SURF
- Measure $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}}) \rightarrow \delta_{CP}$ and $sgn(\Delta m_{31}^{2})$
- Near-Detector (ND) to measure unoscillated beam, at ≈ 570 m from v production
- Far-Detector (FD) to measure oscillated beam, at ≈ 1300 km from v production

* See Appendix B

ProtoDUNE-SP Run 5772 Event 15

- Primary physics goals*: $\delta_{_{CP}}$ and v mass ordering
- v or v beam from Fermilab to SURF
- Measure $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}}) \rightarrow \delta_{CP}$ and $sgn(\Delta m_{31}^{2})$
- Near-Detector (ND) to measure unoscillated beam, at ≈ 570 m from v production
- Far-Detector (FD) to measure oscillated beam, at ≈ 1300 km from v production

DUNE makes use of Liquid Argon Time Projection Chambers (LArTPCs)

 $\sigma \approx 10^{-38}$ cm² per nucleon and GeV (tiny!!)

→ High (anti)neutrino flux (Beam*: 1.2 MW initially, upgrade to 2.4 MW later) → High number of target nucleons (≈70'000 t LAr in FD, ≈150 t LAr in ND)

 $\sigma \approx 10^{-38}$ cm² per nucleon and GeV (tiny!!)

→ High (anti)neutrino flux (Beam*: 1.2 MW initially, upgrade to 2.4 MW later) → High number of target nucleons (≈70'000 t LAr in FD, ≈150 t LAr in ND)

Expected v interaction rates (no fiducialization) FD (70 kt LAr): ≈ 6 / hour ND (0.15 kt Lar): ≈ 23 / spill

DUNE Near-Detector (ND) Complex

See Appendix B

My focus

ND-LAr

LArTPC based on the ArgonCube design → Measure interactions on LAr

ND-GAr (µ spectrometer for ND-LAr) Magnetised high-pressure gaseous argon TPC → Measure muon momentum and charge → Precision cross-section measurements

SAND Dedicated magnetised beam monitor

Courtesy of A. Bross (Fermilab)

Challenges for ND-LAr

Simulated v interactions (1 spill, ≈ 80 t LAr) Each color corresponds to 1 v interaction

Challenges for ND-LAr

Simulated v interactions (1 spill, ≈ 80 t LAr) Each color corresponds to 1 v interaction

However... Detector is "color blind"

Challenges for ND-LAr

Simulated v interactions (1 spill, ≈ 80 t LAr) Each color corresponds to 1 v interaction

The high flux (interaction rate) poses challenges for the DUNE ND-LAr

Mitigate high event rates using a **modular LArTPC** (ArgonCube concept)

- Optically isolated TPCs with fast light readout \rightarrow Tag individual v interactions!
- Shorter charge readout window, less stringent requirements on LAr purity, HV, etc.

- 0. Neutrino Physics (in a Nut-Shell)
- 1. The Deep Underground Neutrino Experiment (DUNE)
- 2. ArgonCube in the DUNE Near-Detector (ND-LAr)

ArgonCube Concept

To mitigate the high event rates segment a big detector volume into individual LArTPC modules

DUNE ND-LAr: Array of 5 x 7 modules, each 1m x 1m x 3m (active) → 147 t LAr (active)

5 modules in beam direction (hadron containment)

7 modules across beam direction (high-angle particles)

ArgonCube Concept

Segment a big detector volume into individual LArTPC modules

The DUNE ND-LAr cryostat will host 5x7 ArgonCube modules

A row of 5 ArgonCube modules

Exploded view of a module

- 0. Neutrino Physics (in a Nut-Shell)
- 1. The Deep Underground Neutrino Experiment (DUNE)
- 2. ArgonCube in the DUNE Near-Detector (ND-LAr)
- 3. Liquid Argon Time Projection Chambers (LArTPCs)

ArgonCube LArTPC Prototype

Module-0 prototype during the assembly

The Module-0 LArTPC Prototype

Anode & charge readout

Module-0 prototype during the assembly

View from below into the open Module-0 prototype

March 14th, 2023 SLAC FPD Seminar | Roman Berner

The Module-0 LArTPC Prototype

Anode & charge readout

Anode & charge readout

Module-0 prototype during the assembly

View from below into the open Module-0 prototype

March 14th, 2023 SLAC FPD Seminar | Roman Berner

The Module-0 LArTPC Prototype

Module-0 prototype during the assembly

View from below into the open Module-0 prototype

Cosmic induced particle shower in the Module-0 prototype

March 14th, 2023 SLAC FPD Seminar | Roman Berner

LArTPC Properties

Excellent for particle tracking & calorimetry → Particle identification (PID)

High abundance and high density of LAr → Scalable to massive detectors, O(10 kt)

LAr is active material AND target

→ Suitable for non-collider experiments and rare-event searches (e.g. Dark Matter, neutrinos)

Drift windows typically several 100 µs → "Slow" charge readout (limited by e⁻ drift speed)

Cosmic induced particle shower in the Module-0 prototype

- 0. Neutrino Physics (in a Nut-Shell)
- 1. The Deep Underground Neutrino Experiment (DUNE)
- 2. ArgonCube in the DUNE Near-Detector (ND-LAr)
- 3. Liquid Argon Time Projection Chambers (LArTPCs)
- 4. ArgonCube Technologies

ArgonCube Module Structure

Central cathode plane

 \rightarrow Splits module into two independent TPCs

^r Thin module walls (fibreglass)

- \rightarrow Reduce dense and dead material
- \rightarrow Opaque to LAr scintillation light
- \rightarrow Electrical insulation to other modules

Short max. drift distances and optical paths

- → Relatively small cathode bias voltages
- → Less stringent requirements on LAr purity
- \rightarrow Reduced electron diffusion & Rayleigh scattering

Cross section of an ArgonCube module

ArgonCube Technologies – Overview

Highly resistive foil at cathode and "field cage"

- \rightarrow Reduce amount of inactive and dense material
- \rightarrow Uniform electric field
- \rightarrow Reduces local LAr boiling
- \rightarrow Reduces number of components in the TPC
- → Slow-down possible discharge effects

Pixelated charge readout

- \rightarrow Amplification & digitization in LAr
- \rightarrow Unambiguous 3D particle tracking

SiPM-based light readout (ArCLight & LCM)

- \rightarrow Timing resolution of O(1ns)
- \rightarrow Dielectric bulk can be employed in E-fields
- \rightarrow High detection efficiency for prompt UV light
- \rightarrow Large area-coverage

Engineering drawing of a DUNE ND module

Resistive Shell

- Cathode & field shell made of resistive Kapton foil, $R_{sheet} = O(1 \text{ G}\Omega/\text{sq})$
- To show that E-fields can be produced and shaped using highly resistive sheets

Resistive Shell TPC without (left) and with (right) Kapton cathode

Resistive Shell

Straight tracks observed across a broad range of E-field intensities (up to 1.6 kV/cm) Total power dissipation < 1 W for E-field intensities up to 1.6 kV/cm No localised boiling or HV breakdowns observed

R. Berner et al., Instruments 3 (2019) 2, 28

Resistive Shell

Cathode plane and field shell made (SLAC) of carbon-loaded Kapton foil laminated on fibreglass planes

Cathode & field shell of the Module-0 prototype

Continuous field shaping

Low profile

→ Reduce amount of inactive and dense material, increase the active TPC volume

High sheet-resistance of O(1 $G\Omega/sq$)

- \rightarrow Reduce local power dissipation
- \rightarrow Limit power dissipation in case of HV beakdown

Small number-count of components → Reduce possible points of failure

Pixelated Charge Readout

- Cylindrical TPC
 \$\phi\$ = 10.1 cm, drift_{max} = 59 cm
- Pixelated charge readout system based on the LArPix ASIC (LBNL)
 → 28 LArPix-V1 ASICs hosting 832 pixels
 - \rightarrow Unambiguous 3D particle tracking, independent of track angle

HV and TPC

Pixel pads on the front of the PCB

ASICs on the back of the PCB

ASICs with wire bonds to the pixel pads

rrrrr

Pixelated Charge Readout

Low noise, self-triggered pixel readout data without ambiguities

Pixel pads of different geometries on the front of the PCB, $\phi \approx 10$ cm

Raw data showing a candidate of a cosmic muon with a delta electron

0

Pixelated Charge Readout

Low-power amplification and digitization for individual pixels

- Operational in LAr, at T \approx -186° C
- 60 µW per pixel, 37 µW digital
- \rightarrow Unambiguous 3D particle tracking
- \rightarrow Reduce LAr boil-off
- → Reduce spurious events and risks for HV breakdowns due to voids
- \rightarrow Reduce data transfer bandwidth

Both sides of a 32 cm x 30 cm pixelated charge readout PCB: 10 x 10 LArPix-V2 ASICs host 70 x 70 pixels, each 4 mm x 4 mm

Light Readout

Two complementary systems: LCM & ArCLight → SiPM-based, compact, robust, scalable, resilient to electric fields

Light Collection Module (LCM) WLS¹ fibres with TPB² coating

ArgonCube Light (ArCLight) WLS¹ bulk + dichroic mirror with TPB² coating

Timing resolution of O(1 ns)

- \rightarrow Important to tag individual neutrino interactions and
- \rightarrow Associate detached energy deposits to individual vertices / interactions

Light Readout

¹ Wavelength shifting ² 1,1,4,4-tetraphenyl-1,3-butadiene ³ Silicon Photomultiplier

Working Principle (ArCLight)

TPB¹ shifts UV light (128 nm) to blue light (425 nm)
 Dichroic mirror with high transparency for blue light
 WLS² plastic shifts blue light to green (510 nm)
 Dichroic mirror with high reflectivity for green ligh
 Specular mirror for reflection → light trap
 SiPM³ to detect green light with a high efficiency

Light Readout

¹ Wavelength shifting ² 1,1,4,4-tetraphenyl-1,3-butadiene ³ Silicon Photomultiplier

ArCLight TPB Coating

Huge differences in TPB crystal structure Dark clusters: Polystyrene (only used for TPB fixation in air-brush solution)

March 14th, 2023 SLAC FPD Seminar | Roman Berner

ArgonCube Technologies – Recap

- 0. Neutrino Physics (in a Nut-Shell)
- 1. The Deep Underground Neutrino Experiment (DUNE)
- 2. ArgonCube in the DUNE Near-Detector (ND-LAr)
- 3. Liquid Argon Time Projection Chambers (LArTPCs)
- 4. ArgonCube Technologies
- 5. ArgonCube Prototypes

SingleCube TPC

SingleCube TPC setup

Cathode (bottom) and field cage

Charge readout (left) and ArCLight (right)

Cubical TPC: 30 cm x 30 cm, drift_{max} = 30.2 cm

- Trigger LArPix-V2 charge readout with light signals
- Combine charge & light signals to reconstruct 3D events
- Test new LAr purification & cooling system

LAr Purification & Cooling System

* See Appendix D

Module-0

Cross section of the ArgonCube Module-0 Small-scale version (≈0.6m x 0.6m x 1.2m) of a DUNE ND-LAr module (≈1m x 1m x 3m)

≈ 600 kg LAr (active)

Incorporates all ArgonCube technologies

- → Resistive cathode & field shell
- \rightarrow Pixelated charge readout
- → ArgonCube light readout systems

Module-0 "Ingredients"

Cathode & field shell (from SLAC)

Charge & light readout systems:

- 16 pixel planes (78'400 pixels)
- 8 ArCLight modules
- 24 LCM modules

Charge & light detection systems (from LBNL, JINR, LHEP)

Module-0 Assembly

Module-0 Installation

Module-0 operation in March 2021: 3 days calibration, 7 days data taking Observed ≈ 60 Mio. cosmic induced events

Module-0 Event Displays

Module-0 Performance – Charge / Light Anticorrelation

Measurements (points) and combined *modified Birk model* fit (lines) for charge (red) and light (blue) in Module-0

Relative charge yield R_c

$$R_C = \frac{Q}{Q_\infty} = \frac{A}{1 + \frac{k}{\epsilon} \cdot \frac{dE}{dx}}$$

Relative light yield R_L $R_L = \frac{L}{L_0} = 1 - \alpha \cdot R_C$

2:	Electric field intensity
a:	Parameter fit to data
A, k:	Parameters fit to data
dE/dx:	Mass stopping power

Module-0 Performance

See Appendix F

LAr filtration & cooling:

- → Sufficient LAr purity, low attenuation of drift electrons
- → Filter took full heat input of the detector

HV, cathode & field shell:

 \rightarrow Stable for E-field intensities up to 1.0 kV/cm

Light readout:

- \rightarrow Timing resolution O(1ns)
- → Successfully provided triggers to charge readout system

Charge readout:

→ Ambiguity-free events across two LArTPCs and at a low noise level

Results are very promising! Next: Test several modules side by side...

ArgonCube 2x2 Demonstrator

2x2 cryostat hosting four Module-0 like detectors

- Test scalability of all ArgonCube concepts and technologies
- Test event reconstruction across individual TPCs & modules
- Benchmark data acquisition and data quality for the ND-LAr

Will be put into high-intensity neutrino beam at Fermilab*

March 14th, 2023 SLAC FPD Seminar | Roman Berner

ProtoDUNE-ND

* See Appendix G

ArgonCube 2x2 Demonstrator exposed to the NuMI beam

MINERvA modules up- and downstream of the 2x2 provide tracking of beam-related particles outside of 2x2

First LArTPC in a neutrino beam with energies relevant for DUNE*

- Performance of ArgonCube technology in high-multiplicity environments
- Long-term performance of 2x2, including cryogenics
- Test reconstruction across sub-detectors (2x2 to MINERvA)
- Platform to develop and test event reconstruction tools (e⁻, n, π , ...)

- 0. Neutrino Physics (in a Nut-Shell)
- 1. The Deep Underground Neutrino Experiment (DUNE)
- 2. ArgonCube in the DUNE Near-Detector (ND-LAr)
- 3. Liquid Argon Time Projection Chambers (LArTPCs)
- 4. ArgonCube Technologies
- 5. ArgonCube Prototypes
- 6. Neutral Pion Reconstruction in LArTPCs

(My) Primary Motivation

* BR($\pi^0 \rightarrow \gamma + \gamma$) ≈ 0.988

Neutral pions can be used as standard candles $\pi^0 \rightarrow \gamma + \gamma$ is a two-body decay^{*}

$$m_{\pi^0, reco} = \sqrt{2E_{\gamma_1}E_{\gamma_2}} \cdot (1 - \cos(\theta)) = 134.97 \text{ MeV} + \text{Bias}$$

→ Verify the energy scale calibration of a LArTPC (affects calorimetry, PID, event reconstruction, oscillation results, ...)

Requirements for π^0 Reconstruction

Shower reconstruction (challenging!)

Need a good handle on:

- Clustering energy depositions (EDEPs)
 Only cluster EDEPs that belong to the same shower
 → Affects reconstructed shower energy E_y
- Start point & direction estimation \rightarrow Affects opening angle θ
- e-γ separation

 \rightarrow Background rejection

Simulated particle interactions in ProtoDUNE-ND

Machine Learning Techniques

For this purpose, I closely worked with experts from SLAC → Apply Machine-Learning techniques on (simulated) LArTPC data

• UResNet for semantic segmentation

 \rightarrow Classifies individual EDEPs (e.g. shower or track)

- Graph Neural Network (GNN)
 → Shower clustering
- UResNet for point prediction

 \rightarrow Proposes shower start point, track start and end, ...

5 semantic classes: Shower, Track, Michel electron, Delta electron, Low energy scatter

Sum up all EDEPs of the shower

→ Some energy (≈ 17%) is lost due to low-energy scatters
 → Apply correction factor (Fudge)

True shower total deposited energy, E_t [MeV]

Electron – Photon Separation

Determine dE/dx at the very start of a shower

 \rightarrow e⁻ deposit about half the energy per unit length than photons ($\gamma \rightarrow e^- + e^+$)

Neutral Pion Reconstruction

I developed an algorithm to match pairs of showers to π^0 decays

Neutral Pion Reconstruction Performance

Next Steps for the Event Reconstruction

Improve the simulation by including

- Charge diffusion
- Detector components (inactive volumes)
- Readout electronics & detector response (noise, thresholds, resolutions)
- Digitization of the signals

Use ProtoDUNE-ND data, reconstruct π^0 masses, and validate the energy scale calibration

- 0. Neutrino Physics (in a Nut-Shell)
- 1. The Deep Underground Neutrino Experiment (DUNE)
- 2. ArgonCube in the DUNE Near-Detector (ND-LAr)
- 3. Liquid Argon Time Projection Chambers (LArTPCs)
- 4. ArgonCube Technologies
- 5. ArgonCube Prototypes
- 6. Neutral Pion Reconstruction in LArTPCs
- 7. Summary

Symmetries

Neutrinos and DUNE

Symmetries

Neutrinos and DUNE

New technology

Symmetries

Neutrinos and DUNE

New technology

March 14th, 2023 SLAC FPD Seminar | Roman Berner

Symmetries

Neutrinos and DUNE

New technology

Prototypes

Module-0

Summary

Symmetries

Neutrinos and DUNE

New technology

Prototypes

Module-0

Reconstruction

Summary

Symmetries

Neutrinos and DUNE

New technology

Module-0

Reconstruction

Module-0 was a success!

 \rightarrow Path for ArgonCube 2x2 and ProtoDUNE-ND is clear

Summary

Symmetries

Neutrinos and DUNE

New technology

Module-0

Reconstruction

Module-0 was a success!

 \rightarrow Path for ArgonCube 2x2 and ProtoDUNE-ND is clear

A lot of hardware R&D, data analysis, event reconstruction, ... was needed to pave the way for meaningful studies with ProtoDUNE-ND which will impact the DUNE ND-LAr design

Me and detector (from left to right)

References

References

- [0] https://de.wikipedia.org/wiki/Sombrerogalaxie#/media/Datei:M104_ngc4594_sombrero_galaxy_hi-res.jpg Accessed: 04. March 2023
- [1] https://images-assets.nasa.gov/image/iss040e080833/iss040e080833~small.jpg Accessed: 04. March 2023
- [2] https://en.wikipedia.org/wiki/Cherenkov_radiation#/media/File:Advanced_Test_Reactor.jpg Accessed 04. March 2023
- [3] https://images-assets.nasa.gov/image/GSFC_20171208_Archive_e001435/GSFC_20171208_Archive_e001435~small.jpg Accessed: 04. March 2023
- [4] https://www-project.slac.stanford.edu/exo/images/hires/tpc_insert.jpg Accessed: 04. March 2023
- [5] https://www.dunescience.org/ Accessed: 04. March 2023
- [6] https://www.google.com/maps/ Accessed: 04. March 2023
- [7] https://arxiv.org/pdf/2007.06722.pdf Accessed: 04. March 2023
- [8] https://indico.cern.ch/event/721385/contributions/3034633/attachments/1666328/ Accessed: 04. March 2023
- [9] https://arxiv.org/pdf/1911.10379.pdf Accessed: 04. March 2023

Appendix A Neutrino Physics

Standard Model of Particle Physics

Source: https://de.wikipedia.org/wiki/Standardmodell_der_Teilchenphysik

March 14th, 2023 SLAC FPD Seminar | Roman Berner

Matter-Antimatter Asymmetry

Right after the Big Bang (standard cosmology)

 $B = N_{Baryons} - N_{Anti-Baryons} = 0$ $L = N_{Leptons} - N_{Anti-Leptons} = 0$

¹ So that the interactions which produce more baryons than anti-baryons will not be counterbalanced by interactions which produce more anti-baryons than baryons

Today

 $\mathbf{B} = \mathbf{N}_{\text{Baryons}} - \mathbf{N}_{\text{Anti-Baryons}} \neq \mathbf{0}$

How did $\mathbf{B} = \mathbf{0} \rightarrow \mathbf{B} \neq \mathbf{0}$?

To produce matter and antimatter at different rates (Sakharov Conditions):

- 1. Baryon number violation
- 2. C-violating and **CP-violating processes**¹
- 3. Interactions out of thermal equilibrium

CP-violations observed in quark sector (e.g. B and K decays) cannot explain full B - asymmetry

A large CP-phase in neutrino oscillations could explain almost the entire B - asymmetry by itself

Three-Flavour Neutrino Mixing

3 mixing angles: 2 Majorana phases: 1 Dirac phase:

 $\begin{array}{l} \theta_{12} \approx 32.0^{\circ}; \theta_{13} \approx 8.5^{\circ}; \theta_{23} \approx 43.5^{\circ} \\ \textbf{a}, \beta \approx \dots ? \text{ (decoupled from oscillation experiments)} \\ \delta_{CP} \approx \dots ? \end{array}$

Neutrino Oscillation Probability

At the moment of neutrino creation $|\nu_{\alpha}(0,0)\rangle = \sum_{i} \mathcal{U}_{\alpha i} |\nu_{i}\rangle$

After the neutrino traveled a distance of L (plane wave approximation)

$$|\nu_{\alpha}(L,t)\rangle = \sum_{i} \mathcal{U}_{\alpha i} |\nu_{i}\rangle \exp\left(-iE_{i}t\right)$$

Project the wave function onto the final state

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L,t) = |\langle \nu_{\beta} | \nu_{\alpha}(L,t) \rangle|^{2}$$

$$E_i = \sqrt{p_i^2 + m_i^2} \approx p + \frac{m_i^2}{2E}$$

Neutrino Oscillation Probability

$$\Delta_{ij} = \frac{\left(m_i^2 - m_j^2\right)L}{4E_{\nu}} = \frac{\Delta m_{ij}^2 L}{4E_{\nu}} \quad a = \pm \frac{G_F N_e}{\sqrt{2}}$$

Matter effects increase with increasing L DUNE: L \approx 1300 km At shorter L, reduced $\delta_{\rm CP}$ sensitivity due to unknown MH (ambiguities) At higher L, reduced $\delta_{\rm CP}$ sensitivity due to larger matter effects

March 14th, 2023 SLAC FPD Seminar | Roman Berner

Neutrino Oscillation Probability

Matter effects increase with L and enhance the sensitivity to the mass ordering

In the normal (inverted) mass hierarchy, the v (v) appearance is enhanced, and the v (v) appearance is suppressed

Source: https://arxiv.org/abs/1505.01891

Neutrino Oscillation Parameters

Global parameter fit based on the three-neutrino mixing scheme yields

Parameter	Mass Ordering	Value	Unit
$\sin^2(heta_{12})$	both	0.307 ± 0.013	-
$\sin^2(\theta_{13})$	both	$(2.18 \pm 0.07) \cdot 10^{-2}$	-
$\sin^2(\theta_{23})$	normal	0.545 ± 0.021	-
$\sin^2(heta_{23})$	inverted	0.547 ± 0.021	-
Δm^2_{21}	both	$(7.53 \pm 0.18) \cdot 10^{-5}$	eV^2
Δm^2_{32}	normal	$(2.453 \pm 0.034) \cdot 10^{-3}$	eV^2
Δm^2_{31}	inverted	$(-2.546^{+0.034}_{-0.040}) \cdot 10^{-3}$	eV^2
δ	both	$(1.36 \pm 0.17) \cdot 10^{-2} \pi$	rad
$\langle \Delta m_{21}^2 - \Delta \overline{m}_{21}^2 \rangle$	both	$< 1.1 \cdot 10^{-4} (99.7 \% \text{ C.L.})$	eV^2
$\langle \Delta m_{32}^2 - \Delta \overline{m}_{32}^2 \rangle$	both	$(-0.12 \pm 0.25) \cdot 10^{-3}$	eV^2

Uncertainties corresponding to 1σ if not stated otherwise

Open Questions in Neutrino Physics

Masses

- How are the masses ordered?
- What is the absolute neutrino mass scale?
- Is the physics behind the masses of neutrinos different from that behind the masses of all other known particles?

CP Symmetry

- Do neutrino interactions violate the CP-symmetry, e.g. $P(v_a \rightarrow v_b) \neq P(\overline{v_a} \rightarrow \overline{v_b})$?
- Is CP-violation involving neutrinos the key to understand the matter antimatter asymmetry of the Universe?

Three-neutrino mixing scheme

• Is $\theta_{_{23}}$ maximal?

Others

- Are there more than 3 mass eigenstates (sterile neutrinos that do not couple to W and Z bosons)?
- Do neutrinos have Non-Standard-Model interactions?

Neutrino Mass Ordering

We know that (>2) neutrinos are not massless We also know the differences of the squared masses, Δm_{ij}^2

 $\Delta m_{21}^2 = (7.53 \pm 0.18) \cdot 10^{-5} \text{ (both)}$ $\Delta m_{32}^2 = (2.453 \pm 0.034) \cdot 10^{-3} \text{ (NH)}$ $\Delta m_{31}^2 = (-2.546^{+0.034}_{-0.040}) \cdot 10^{-3} \text{ (IH)}$

Source: https://doi.org/10.1093/ptep/ptaa104

Appendix B DUNE

DUNE Physics Opportunities

- Primary goals
- Precision measurements
- Proton decay studies
- Tau physics via
- Probe nucleon structure
- Supernova v detection
- CPT violations
- Neutrino trident production
- Sterile neutrino searches
- Boosted DM searches in sun
- Light DM searches

. . .

• Heavy neutral lepton searches

 δ_{CP} , sgn(Δm_{31}^2) $\theta_{13}, \theta_{23}, \theta_{23}$ (octant), Δm_{31}^2 $p^+ \rightarrow K^+ + \overline{v}, p^+ \rightarrow K^0 + e^+/\mu^+, p^+ \rightarrow \pi^0 + e^+, \dots$ $V_{\mu} \rightarrow V_{\tau}, V_{\mu} \rightarrow V_{\tau}$ $v + N \rightarrow \dots, v + N \rightarrow \dots$ v CC, v NC, v NC, and v ... $P(v_{ij} \rightarrow v_{e}) \neq P(\overline{v}_{e} \rightarrow \overline{v}_{ij})$ $v + N \rightarrow v/l + N + l^+ + l^-$, and v ... Disappearance of v and \overline{v} NC & CC interactions $DM + DM \rightarrow v + v, \dots$ NC-like scattering, decays of DM from beam dump

on searches Decays of HNL produced in beam dump

March 14th, 2023 SLAC FPD Seminar | Roman Berner

DUNE Sensitivities

To obtain these sensitivities, need to constrain the beam at the ND-site → Good detector resolution for tracking, calorimetry & PID

(background rejection, reconstruction of interaction type, energy, and other variables)

→ Advantage of using the same technology (LArTPC) in ND & FD (minimise/cancel cross-section and detector response uncertainties)

March 14th, 2023 SLAC FPD Seminar | Roman Berner

The DUNE ND

Requirements:

- Measure unoscillated v and v energy spectra and fluxes
- Measure v-Ar interaction **cross-section** to predict observations at FD
- Contain relevant **event topologies** across the full v phase space
 - \rightarrow Good hadron **containment**
 - → Good handle on **muon charge and momentum**
- Good detector resolution for tracking, calorimetry & particle identification
 → Background rejection & reconstruction of interaction type, energy, and other variables

Advantage:

• Same target (LAr) and technology (TPC) as the FD to cancel/reduce systematics

Challenge:

 High-multiplicity environment (!): Expect ≈ 10 v interactions per 100 t LAr and per 10 µs beam spill at 1 MW beam power

ND-GAr

High pressure gas TPC (up to 10 atm Ar-CH₄) surrounded by EM calorimeter and within ≈ 0.5 T field → Excellent calorimetry and momentum resolution (PID!)

Magnetic field

- Momentum and charge determination from track curvature
- Estimation of wrong-sign v / v contamination (important for wrong-sign v / v appearance in FD)

Compared to LArTPC

- Low momentum threshold for particle tracking
- Reduced MCS and bulk interactions of FS particles
- Improved v-Ar interaction measurements
- More precise vertex activity measurements

Ability to change the gas mixture

 \rightarrow Different nuclear targets enable accurate constraints and tuning of v-N interaction models

DUNE-PRISM

Data-driven approach to reduce systematic uncertainties related to flux and cross section

ND-LAr & ND-GAr can move up to \approx 30 m off-axis

- \rightarrow v energy spectrum becomes narrower, peaking at lower energies
- \rightarrow Data samples at different v flux spectra (e.g. QE or RES dominated)
- \rightarrow Enabling deconvolution of flux and cross-section uncertainties
- → Enabling combination of different fluxes during the data analysis

SAND

- \rightarrow Measure v (and μ) energies, flux and vertex distribution
- \rightarrow Detect possible changes in the beamline

The DUNE FD Site

≈ 1.5 km underground in the Sanford Underground Research Facility (SURF) in Lead, South Dakota

Four 17.5 kt (10 kt fiducial) LArTPCs 65.8 m x 18.9 m x 17.8 m (external) 62.0 m x 15.1 m x 14.0 m (internal)

≈ 3.4 neutrino interactions per hour

Three caverns with two out of four FD modules and the cryogenigs systems at SURF

Source: https://arxiv.org/abs/2002.02967

Appendix C LBNF

The DUNE Beamline and ND Facility

Protons from Main Injector

- \rightarrow 60 GeV 120 GeV
- \rightarrow Pulsed at a cycle time of 0.7s 1.2s
- \rightarrow Spill duration of 10 µs
- \rightarrow Sent on graphite target, producing mostly $\pi^{+/-}$, some K^{+/-}, and others

The DUNE Beamline and ND Facility

Three-horn focusing system

- → Select negatively or positively charged particles (v enhanced or v enhanced beam)
- \rightarrow Optimised for DUNE sensitivity to δ_{CP}

The DUNE Beamline and ND Facility

Phase 1

- \rightarrow 1.0 MW 1.2 MW beam power
- \rightarrow Corresponding to $\approx 7.5 \cdot 10^{13}$ Protons On Target (POT) per cycle

Phase 2

 \rightarrow 2.4 MW beam power

DUNE Neutrino Flux at the FD Site

Unoscillated (blue area) and oscillated (orange area) vµ flux at the DUNE FD site

Source: https://arxiv.org/abs/2103.04797

Appendix D Properties of Argon

LAr as Detector Material

Advantages

- High scintillation light yield & ionization charge yield
- Transparency for scintillation light
- High electron mobility
- High dielectric strength
- Noble gas inert to chemical reactions \rightarrow simplified purification
- Ar is the 3rd most abundant gas in Earth's atmosphere (0.93% by Vol.)
 → affordable

Disadvantages

- Low boiling point (≈ 87 K at 1 atm)
 → need cryogenic equipment & know-how
- Scintillation light ($\lambda \approx 129$ nm) is difficult to detect efficiently

Dielectric Strength of LAr

Breakdowns observed at ≈40 kV/cm

- \rightarrow Large inactive clearance volumes around the HV components or
- → Segment LArTPC and use dielectric module walls (ArgonCube concept)

Electron Diffusion in LAr

Electron cloud spreads differently along (σ_1) and across the drift (σ_7)

Data generated with the model from https://arxiv.org/abs/1508.07059

Electron Drift Speed in LAr

Dependencies

- Electric field intensity (and screening effects due to space charges)
- Temperature of medium
- Concentration of impurities (e.g. H₂, N₂, CH₄)

Source: https://doi.org/10.1093/ptep/ptaa104

Electron Drift Speed in LAr

Dependencies

- Electric field intensity (and screening effects due to space charges)
- Temperature of medium
- Concentration of impurities (e.g. H₂, N₂, CH₄)

Source: https://www.phy.bnl.gov/~chao/docs/Properties-of-LAr-v9a-thorn.pdf

Impurities in LAr

Electro-negative impurities at ppm-level attenuate the charge & light signals

$$N(x) = N_0 \cdot exp(-x/l)$$

- N: Number of remaining electrons or photons
- N_o: Number of electrons or photons initially present
- x: Distance travelled by the particle(s)
- l: Electron mean free path or photon attenuation length

Water & oxygen Primarily attenuate charge signals

Nitrogen Mainly suppress light signals (quenching)

Scintillation Light in LAr

To produce scintillation light, need excited dimer state Ar_2^* which can decay via $Ar_2^* \rightarrow Ar + Ar + \gamma$

The excited dimer states can be produced via

- Excitation $A\Gamma \rightarrow A\Gamma^*$ $A\Gamma^* + A\Gamma \rightarrow A\Gamma_2^*$
- Ionization
 - $\begin{array}{ccc} A\Gamma \rightarrow A\Gamma^{+} + e^{-} \\ A\Gamma^{+} + e^{-} + A\Gamma \rightarrow & A\Gamma_{2}^{*} \\ & \rightarrow & A\Gamma_{2}^{**} \\ & \rightarrow & A\Gamma^{**} + A\Gamma \\ & \rightarrow & A\Gamma^{*} + A\Gamma + heat \\ & \rightarrow & A\Gamma_{2}^{*} + heat \end{array}$
Compton Scattering in Argon

For E > 10 MeV (incoherent) compton scattering cross section is smaller than cross section for pair production, but it's not negligible!

Data generated with XCOM: https://physics.nist.gov/cgi-bin/Xcom/xcom3_1

Energy Loss of Charged Particles

Mass stopping power [MeV·c²/g]

- \rightarrow Energy loss via excitation and ionization
- \rightarrow For moderately relativistic particles (0.1 < $\beta\gamma$ < 1000) others than electrons
- \rightarrow Almost material independent, slowly decreasing with increasing Z

→ Weighted by rare events with large single-collision energy losses (see Landau / MPV)

$$\left|-\frac{dE}{dx}\right\rangle_{\rm ion} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln\left(\frac{2m_e c^2 \beta^2 \gamma^2 W_{max}}{I^2}\right) - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right]$$

Source: https://doi.org/10.1093/ptep/ptaa104

Energy Loss of Charged Particles

Gas mixture: 80% Ar, 20% CH₄, at 8.5 bar.

 $-\rho \cdot \langle dE/dx \rangle$

March 14th, 2023 SLAC FPD Seminar | Roman Berner

Appendix E ArgonCube Technologies

Resistive Shell

Cathode plane and field shell made (SLAC) of carbon-loaded Kapton foil laminated on fibreglass planes

Cathode & field shell of the Module-0 prototype

Continuous field shaping

Low profile

→ Reduce amount of inactive and dense material, increase the active TPC volume

High sheet-resistance of O(1 $G\Omega/sq$)

- \rightarrow Reduce local power dissipation
- \rightarrow Limit power dissipation in case of HV beakdown

Small number-count of components → Reduce possible points of failure

Pixelated Charge Readout

Simulation of a 3 GeV v_e (Wire-Cell)

True energy depositions

Signal from projective wire readout

Courtesy of D. Dwyer (LBNL)

Pixelated Charge Readout

LArPix-V1 ASICs: Communication via 1D daisy-chain (not very resilient to failures) → Upgrade in LArPix-V2: Hydra Network*

Pixelated Charge Readout

Low-power amplification and digitization for individual pixels

- Operational in LAr, at T \approx -186° C
- 60 µW per pixel, 37 µW digital
- \rightarrow Reduce LAr boil-off
- → Reduce spurious events and risks for HV breakdowns due to voids
- → Reduced data transfer bandwidth: O(0.1 MB/s/m2) in ND-LAr
- → Unambiguous 3D particle tracking

Both sides of a 32 cm x 30 cm pixelated charge readout PCB: 10 x 10 LArPix-V2 ASICs host 70 x 70 pixels, each 4 mm x 4 mm

LArPix-V2 Block Diagram

64 analog-to-digital converters (ADC)

• 1 shared digital control chip configuration and data I/O

¹ CSA output grows \approx 1 mV per 250 e⁻ received at the input

LArPix-V1 vs LArPix-V2

LArPix-V1

ASICs wire-bonded to pixel PCB 1 UART → 1D daisy chaining

ASICs soldered on pixel PCB 4 UARTs → 2D daisy chaining

LArPix-V2

LArPix-V2 Daisy Chaining

Daisy chain

 \rightarrow Keep number of physical communication lines small

Each ASIC hosts four UARTs

- → Sophisticated daisy-chain network
- \rightarrow Enables routing around of a broken UART or ASIC

LArPix-V2

Flat response as function of angle between the ionization traces and the pixel orientation

 Θ_{anode} : Absolute value of the azimuthal angle Φ_{anode} : Absolute value of the zenith angle w.r.t. the anode plane

Credits: P. Madigan (LBNL)

Light Readout

Two complementary systems: LCM & ArCLight → SiPM-based, compact, robust, scalable, resilient to electric fields

Light Collection Module (LCM)

- Developed at JINR, Dubna
- WLS¹ fibres with TPB² coating

ArgonCube Light (ArCLight)

- Developed at LHEP, Bern
- WLS¹ bulk + dichroic mirror with TPB² coating

Timing resolution of O(1 ns)

- \rightarrow Important to tag individual neutrino interactions and
- \rightarrow Associate detached energy deposits to individual vertices / interactions

Light Readout

¹ Wavelength shifting ² 1,1,4,4-tetraphenyl-1,3-butadiene ³ Silicon Photomultiplier

Light Collection Module (LCM)

- 1: TPB¹ shifts UV light (128 nm) to blue (425 nm)
- 2: WLS² fibre shifts blue light to green (510 nm)
- 3: Total internal reflection in fibre \rightarrow light trap
- 4: SiPM³ to detect green light with a high efficiency

ArgonCube Light (ArCLight)

- 1: TPB¹ shifts UV light (128 nm) to blue (425 nm)
- 2: Dichroic mirror with high transparency for blue light
- 3: WLS² plastic shifts blue light to green (510 nm)
- 4: Dichroic mirror with high reflectivity for green light
- 5: Specular mirror for reflection \rightarrow light trap
- 6: SiPM³ to detect green light with a high efficiency

Appendix F Module-0 Performance

Module-0 Performance – Electron Lifetime

To prevent (charge & light) signal attenuation → Need high LAr purity / high electron lifetime (> 1 ms) in LAr

Credits: M. Mooney (CSU)

Module-0 Performance – Light Readout

Photon detection efficiency O(1 %) for LCMs, O(0.1 %) for ArCLights

Timing resolution O(1 ns)

 \rightarrow Enables association of detached energy deposits to individual interactions / vertices

Module-0 Performance – Charge Readout

Flat acceptance as function of track angle

Credits: P. Madigan (LBNL)

Module-0 Performance – Charge / Light Anticorrelation

Measurements (points) and combined *modified Birk model* fit (lines) for charge (red) and light (blue) in Module-0

Relative charge yield R_c

$$R_C = \frac{Q}{Q_{\infty}} = \frac{A}{1 + \frac{k}{\epsilon} \cdot \frac{dE}{dx}}$$

Relative light yield R_L $R_L = \frac{L}{L_0} = 1 - \alpha \cdot R_C$

ε:	Electric field intensity
a:	Parameters fit to data
A, k:	Parameters fit to data
dE/dx:	Mass stopping power

Appendix G NuMI & LBNF Beam

NuMI Beam

Neutrinos at the Main Injector – NuMI

- \rightarrow 120 GeV primary proton beam
- \rightarrow Graphite target with a length of 953.8 cm
- \rightarrow Two parabolic focusing horns, each \approx 3.5 m in length
- \rightarrow 675 m long decay pipe

Source: https://arxiv.org/abs/1507.06690

NuMI vs. LBNF Beam

¹ In MINOS ND hall ² In DUNE-ND hall

NuMI¹ compared to LBNF²

 \rightarrow Lower flux, but higher v / v energy where the cross section is larger

- → Event rate & track multiplicity in ProtoDUNE-ND comparable with those in ND-Lar
- → Scale of reconstruction challenge is similar for both detector types
- \rightarrow ProtoDUNE-ND suitable to test and benchmark the ND-LAr event reconstruction

Source: https://arxiv.org/abs/2103.13910

NuMI vs. LBNF Beam

Neutral pions (primaries)

 \rightarrow Comparable number of π^0 produced in ProtoDUNE-ND and in DUNE ND-Lar

 \rightarrow Similar π^0 momenta

→ Scale of reconstruction challenge is similar for both detector types

Appendix H Event Reconstruction in LArTPCs

Neutral Pion Reconstruction Performance

Electron Rejection in $\gamma + \gamma \rightarrow \pi^0$ Matcher

Showers with reconstructed start close to vertex candidate likely are induced by (primary) electrons → Reject if start is closer than 3px to vertex candidate

Fraction F of photons converting to e⁻e⁺ pair (without first Compton scattering) within the first n pixels*: $F = 1 - \exp\left(\frac{-x}{9/7 \cdot X_0}\right) = 1 - \exp\left(-n \cdot \frac{0.3 \text{ cm}}{18 \text{ cm}}\right)$ Fraction of photons Conversion converting [%] distance < 5 px 8.0 6.4 < 4 px< 3 px4.9 < 2 px3.3

pixel pitch = 0.3 cm radiation length in LAr $\approx 9/7 \cdot X_0$

= 18 cm