
hls4ml demo
• Today we will go through a few notebooks from the hls4ml tutorial

- more info at the hls4ml documentation

• Part 1: get started with hls4ml and train a basic model and run the conversion,
simulation & c-synthesis steps

notebook: part1_getting_started.ipynb

• Part 2: learn how to tune inference performance with post-training quantization and
parallelization

notebook: part2_advanced_config.ipynb

• Part 3: perform model compression and observe its effect on the FPGA resources/latency

notebook: part3_compression.ipynb

• Part 4: train using QKeras “quantization-aware training” and study impact on FPGA
metrics

notebook: part4_quantization.ipynb

1

https://github.com/fastmachinelearning/hls4ml-tutorial
https://fastmachinelearning.org/hls4ml/

Caveats
• hls4ml needs FPGA vendor HLS compiler tools

• In the past we were used to have on demand custom colab servers with Xilinx Vivado
HLS installed for education purposes but now not anymore :(

• We do though provide prebuilt docker images with Vivado that can be pulled and built
(see README)

• However, it takes long time and a lot of disk space to build the image

• As there’s not enough time today, I’ll walk you through the notebooks and teach you
some HLS basics which can  
hopefully be a starting point  
for you to go deeper by yourself  
in the next days of the school  
or in the future

2

https://github.com/fastmachinelearning/hls4ml-tutorial#readme

Physics case: jet tagging

3

Study a multi-classification task to be implemented on FPGA: discrimination between
highly energetic (boosted) q, g, W, Z, t initiated jets

 top
other quarkZ W gluon

t→bW→bqq

3-prong jet

Reconstructed as one massive jet with substructure

q/g backgroundW→qqZ→qq

2-prong jet 2-prong jet no substructure

and/or mass ~ 0

Physics case: jet tagging

4

 top other quarkZ W gluon

Input variables: several observables known to have high discrimination
power from offline data analyses and published studies [*]

[*] D. Guest at al. PhysRevD.94.112002, G. Kasieczka et al. JHEP05(2017)006, J.
M. Butterworth et al. PhysRevLett.100.242001, etc..

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.112002
https://link.springer.com/article/10.1007/JHEP05(2017)006
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.242001

Physics case: jet tagging

5

• Fully connected neural network with 16 expert-level inputs:

- Relu activation function for intermediate layers

- Softmax activation function for output layer

AUC = area under ROC curve

(100% is perfect, 50% is random)

better

• We’ll train the five class multi-classifier on a sample of 1̴M events  
with two boosted WW/ZZ/tt/qq/gg anti-kT jets 
[doi:10.5281/zenodo.3602254, OpenML]

5

https://zenodo.org/record/3602254#.YEZhBOZMFp8
https://www.openml.org/d/42468

Introduction to HLS
• High-Level Synthesis (HLS) creates firmware blocks from C++

- FPGA (concurrent) programming requires taking care of a temporal component

- this is controlled in HLS through pre-processor directives (pragmas)

• We use Vivado HLS which is the Xilinx version

- there are actually lots of different HLS’s, but they basically all do the same thing

- for example: Intel Quartus HLS

• References:

- https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis

- https://raw.githubusercontent.com/KastnerRG/pp4fpgas/gh-pages/main.pdf

6

https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis
https://raw.githubusercontent.com/KastnerRG/pp4fpgas/gh-pages/main.pdf

HLS project overview

7

C++ test bench [2]

Test your HLS block on inputs, check outputs, etc…

HLS block [1]

Your task, written in C++, with directives to guide HLS

to optimize the firmware for your task

[1] hls4ml_prj/firmware/myproject.cpp 
[2] hls4ml_prj/myproject_test.cpp

nb, in hls4ml API the predict method runs the test bench

Building the project: the TCL file

8

We build our project using the
TCL scripting language

ex: hls4ml_prj/build_prj.tcl

Steps for building project

In hls4ml this file is created with
hls_model.build() using
parameters from configuration
specified at hls_model creation
time

Building the project: the TCL file

• csim_design:

- C simulation of test bench and HLS block

- both compiles and runs your code at the C++ level to make sure it’s working

• csynth_design:

- synthesizes your project for the FPGA and makes an estimate of resource usage and timing

- generates RTL-level design in Verilog/VHDL to be synthesized (also called logic synthesis)

• cosim_design: a simulation of the RTL design to verify its functionality

• export_design: exports project with well-defined interfaces enabling it to be incorporated
into a larger design

- also called IP block (with IP = Intellectual Property)

9

Building the project: the TCL file

• logic synthesis: it is run with Vivado (not Vivado HLS) — different tcl script [*]

- it is translates the RTL design into a netlist, i.e. the list of logical elements and the
connections between them

- the netlist is then associated with specific resources in a target device (place and route)

- resulting configuration captured in a bitstream containing a a binary representation of the
configuration of each FPGA resource including a logic elements, wire connections, and on-
chip memories

- over 1 billion configuration bits on modern FPGAs!

- command: vivado -mode batch -source design.tcl

10

Additional step before deploying the design on the FPGA:

[*] https://docs.xilinx.com/viewer/book-attachment/KslPHBCdt0FBb__VT~0IFg/wAZ0CgY5heu3u6xaiteGeA

https://docs.xilinx.com/viewer/book-attachment/KslPHBCdt0FBb__VT~0IFg/wAZ0CgY5heu3u6xaiteGeA

Running

11

vivado_hls -f <mytcl>.tcl

In hls4ml this is run automatically by the hls_model.build()

you can specify some options, ex: hls_model.build(csim=False)

Pragmas

12

https://www.xilinx.com/htmldocs/xilinx2017_2/sdaccel_doc/topics/pragmas/ref-pragma_HLS_resource.html

Pragmas are used to control the timing/
resources and optimize the HLS block
for your use case.

It’s not always obvious in what priority
are they executed. So far it’s mostly
been trial and error. And I’m unfamiliar
with like ~half of these..

https://www.xilinx.com/htmldocs/xilinx2017_2/sdaccel_doc/topics/pragmas/ref-pragma_HLS_resource.html

Pipelining

13

What is the Initiation Interval (II):

• for a function, II is the number of clock cycles before it could accept new inputs

• for a loop, II is the number of clock cycles before the next iteration of a loop starts to process data

In hls4ml is what we call the Reuse Factor

Latency = 8

II = 3 II = 1

Latency = 4

RD
CMP
WR

Partitioning arrays
• For pipelined (parallelized) architectures, partitioning your array appropriately is

important:

- arrays are BRAMs by default unless they are partitioned (or reshaped) for pipelined data flow.

- if there are two accesses to the same array in the loop body, it will need two read operation
through the same memory port. So II becomes 2 and latency increases by 1 clock cycle!

14

Partitioning arrays

15

How do we solve this? The idea is to break one array into multiple small parts, so that we can
access them at the same time.

The complete scheme split the array into individual elements and so requires
the smallest memory per each element → results in architecture with
multiple small memories or registers (LUTs) instead of one large memory

Partitioning arrays

16

How do we solve this? The idea is to break one array into multiple small parts, so that we can
access them at the same time.

Example from hls4ml_prj/firmware/nnet_utils/nnet_dense_latency.h:

#pragma HLS ARRAY_PARTITION variable=biases complete

#pragma HLS ARRAY_PARTITION variable=mult complete

#pragma HLS ARRAY_PARTITION variable=acc complete

Loop unrolling

17

To optimize loops, people often suggest unrolling with `#pramga HLS unroll`:

creates dedicated logic of the body loop for each of its iteration, so the entire loop
can be run concurrently

for(i=N; i>0; i - -){

a[i] = b[i] * c[i]

}

Loop unrolling in hls4ml

18

Example from hls4ml_prj/firmware/nnet_utils/nnet_dense_latency.h:

// For parallel inputs:

// - completely partition arrays -- target fabric

// - if we have an unroll factor, limit number of multipliers

#pragma HLS PIPELINE II=CONFIG_T::reuse_factor

Unrolling can as well be obtained with the pipeline pragma:

in hls4ml the reuse_factor defines how much to unroll and so defines the II and the latency

Efficient NN design: compression
• Neural Network compression is a widespread technique to reduce the size, energy

consumption, and overtraining of deep neural networks

• Several approaches in literature [arxiv.1510.00149, arxiv.1712.01312, arxiv.1405.3866, arxiv.1602.07576,
doi:10.1145/1150402.1150464]

• Today we will test the tensorflow model sparsity toolkit

- https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

19

Main idea:

iteratively remove low magnitude
weights, starting with 0 sparsity,
smoothly increasing up to the set
target as training proceeds

PolynomialDecay schedule

https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1712.01312
https://arxiv.org/abs/1405.3866
https://arxiv.org/abs/1602.07576
https://dl.acm.org/citation.cfm?doid=1150402.1150464
https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

Efficient NN design: compression

20

Fully parallelized

(max DSP use)

70 %compression 
= 70% less DSPs

Number of DSPs available

20

Optional notebooks
• Part 5: boosted decision trees

notebook: part5_bdt.ipynb

• Part 6: convolutional neural networks

notebook: part6_cnns.ipynb

• Part 7: deployment on FPGA board (demo)

notebooks: part7*.ipynb

21

The PYNQ-Z2 board
• In part7 you build a demonstration of a NN inference acceleration on the PYNQ-Z2

board

- it does not connect through PCIe but it’s a system on chip (SoC), i.e. all components are on
the same board (including microcontrollers)

- it can be easily programmed with python code / jupyter notebook 
→ easy software interface and framework for rapid prototyping and development

• It uses a Xilinx Zynq Z7020 SoC device which is tiny wrt the one we have tested so far in
this course

- only ~200 DSPs instead of 12K !

22

http://www.pynq.io/home.html

Cost is less than 200$!!

http://www.pynq.io/home.html

