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Plan for this talk
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• Part I: What is the Cosmic Frontier and what are 
the observables?

• Part II: Are we being efficient (speed)?

• Part III: Are we extracting the whole information? 

• Part IV: Do we understanding the data?



Part I: 
What is the Cosmic Frontier and what are the 

observables?
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A simple yet strange Universe 4

But the model is based on…
• Dark Matter (?)
• Dark Energy (?)
• Inflation (?)
• Neutrinos and other light particles (?)

Planck, BOSS

A major goal of the Cosmic Frontier 
program is to understand these 
“ingredients”! 



A simple yet strange Universe 5

Planck, BOSS

Fit fully characterized by 6 numbers*
(with no evidence of needing more):

matter “baryons”
amplitude of 
primordial 
fluctuations

slope
of primordial
fluctuations

reionization

expansion
rate today

* and a few assumptions such as flat geometry and minimum mass neutrinos



A brief history of the Universe
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94% of photons
travel from the CMB to us 
without scattering*

6% scatter with matter

*path slightly deflected
by gravitational lensing

On small scales, the Cosmic 
Microwave Background (CMB)
contains a “map” of the entire 
observable universe



Cosmic microwave background (CMB)
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Planck Satellite (2018)

“primary fluctuations”

• Large scales (< 1 deg) 🡪 
primordial

• Smaller scales (> 1 deg) 🡪 
processed by (known) plasma 
physics + gravity

“CMB (angular)
power spectrum”



CMB lensing
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Paths of CMB photons deflected by matter 🡪 create statistical anisotropy that can be measured
Can make maps of the projected matter density (including Dark Matter) to the CMB! 

ACT DR6 lensing map



Galaxy (weak) lensing
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Wikipedia

Rubin Observatory
LSST

large scales small scales

“cosmic shear power spectrum”



Large Scale Structure (LSS)
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SDSS

Each dot is a real galaxy! 

large scales small scales

“galaxy power
spectrum”
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= 0.5%

🡪 4% suppression minimum!



Transients
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Extragalactic:
• Supernovae/kilonovae
• Fast Radio Bursts, gamma ray bursts
• Tidal disruption events
• Strong lensing time delays
• …

Galactic:
• Asteroids
• Interacting binaries
• Transiting exoplanets
• Microlensing
• Pulsars
• …



DESI
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13Dark Energy Spectroscopic Instrument: Massively multiplexed 
spectroscopic survey with 5000 robotic fibers, over ~14,000 sq. deg
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It will perform the 10 year LSST survey of the sky



15The CMB landscape – mid 2020s

• 10 Countries
• 40+ institutions

Large Aperture Telescope
one 6 meter in diameter

Small Aperture Telescopes
42 cm refractors

Large frequency coverage (30 – 270 GHz)

Fully funded
6-year program
First light in 2024!



CMB-S4
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• CMB S4: next generation ground based experiment
• Factor of ~10 increase in sensitivity
• ETA ~late in this decade

• Multi-agency effort (DOE & NSF)



Looking ahead: the “explosion” of surveys
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PUMA?

credit: D. Kirkby

SPHEREx 



Dark Matter direct and indirect detection
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IF Dark Matter interacts 
(weakly) with the Standard
Model, can look for 
scattering/recoil (direct 
detection).
Several targets: Xenon, 
Germanium, etc

Also: “indirect detection” in 
astrophysical systems (Eg. Fermi 
gamma ray satellite)

LZ/SLAC

Maria Elena Monzani’s lecture 
on anomaly detection!



Part II: 
are we being efficient (speed)? 
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Challenge 1: theoretical model 
◼ Complex & non-linear dependence of theory on cosmological parameters even for power 

spectrum (2 point function). Often no analytical form, and prediction relies on expensive 
numerical simulations.
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Calculating

Can take minutes to hours (or more).
Often too slow for parameter inference!

SOLUTION: Build emulators! 
Reduce theory calculation to O(ms) per call 

🡪 Joe DeRose’s lecture on emulators



Challenge 2: parameter inference 
◼ High dimensional problem: typically > 100 parameters (dimensions) inference. Slow or 

impossible.
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SOLUTION: Build a differentiable likelihood + differential emulators! 
            🡪 Joe DeRose’s lecture

Typically you would sample the posterior by Monte-Carlo. 
In high-dimension (>100 parameters), algorithms involving gradients are more 
efficient (eg. Hamiltonian Monte Carlo).



Mock data generation
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Lensing data

arXiv:2008.03833

arXiv:2110.02232

“Gas pasting” on Dark-Matter only simulations

Both cases based on (conditional)
Variational Auto-Encoder (VAE)

Similar applications with Generative 
Adversarial Networks (GANs)

Diffusion models? 

See lectures on generative
models applications



Mock data generation
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Can you tell which one is generated by an (expensive) hydrodynamical 
simulation and which is generated by CVAE?



Part III: 
are we extracting the whole information? 
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Beyond the power spectrum
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• Power spectrum (2pt function) contains the whole 
information only for Gaussian fields

• Can perturbatively consider 3pt function and 
higher, but (in general), limited information 
available.

• But in general, no guidance on what’s the most 
informative statistic…

• Several options available:
• Field-level inference
• Compression in a “small” number of summary 

statistics
• In both cases, likelihood may not be known 

analytically 🡪 
likelihood-free/simulation-based inference)



Field-level inference
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The initial conditions are very close to Gaussian: they contain the 
whole information. Can we reconstruct them? 

simulation

reconstruction



Field-level inference
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“solving the inverse problem by optimization” 
Optimization D. Bartlett

differentiable



Field-level inference
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https://blog.tensorflow.org/2020/03/simulating-universe-in-tensorflow.html (Modi, Lanusse et al)

Optimization converges in O(20 steps), 
even though Ndim = Npix ~ 106 or more!

But: want to marginalize over the initial 
conditions to extract cosmological 
parameters. Active area of research and 
questions remain!

Can use Laplace approximation or MUSE 
(see arXiv:2112.09354).

Or… full HMC sampling (eg. BORG 
https://www.aquila-consortium.org/)

🡪 See “Introduction to Differentiable 
Programming in Jax” (F. Lanusse)



More generally: the full problem
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Often we need more freedom than a traditional likelihood approach:

• We may not know what the likelihood is (Gaussian approximation is 
often a bad one!)

• We may summarize, cut, mask the data any way we want
• Observational or instrumental effects are hard to treat analytically but 

easy to simulate.

Simulating data is often much easier than deriving an accurate likelihood
Simulation-Based Inference (SBI)

SBI = Inference “engine” when explicit likelihood is intractable or unknown, 
but simulation is possible.



Simulation based inference introduction
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Simplest 
implementation of
“Approximate
Bayesian 
Computation”
(ABC)

Suffers from severe
“Curse of 
dimensionality” 



Compression beyond the power spectrum
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• Beyond the power spectrum, we have little 
guidance on what’s the most informative 
statistic…

• Score compression and Information 
Maximizing Neural Networks (IMNN):                              
(p < N) produce a small number of summary 
statistic that maximize the retained Fisher 
information. 

• See arXiv:1802.03537 for more info. 



Likelihood-free inference (LFI)
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Discovering new relations: symbolic regression
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https://github.com/MilesCranmer/PySR

arXiv:2201.01305

• Search the space of analytic equations to 
fit some data

• Often done by hand but efficient 
algorithms exist!

• Concise
• Interpretable

arXiv:2305.01582



Part IV: 
Do we understand the data? 
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Classification
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• Source classification (stars vs 
galaxies vs quasars etc)

• Transient classification
• Classification of the cosmic web 

(voids, sheets, filaments etc)
• Photometric redshifts
• …

Both supervised and unsupervised 
methods. Need to allow for the 
existence of unexpected patterns! 

arXiv:1909.10537



Anomaly detection
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🡪 Maria Elena Monzani’s lecture

Several goals:
• Eliminate the influence of outliers or 

contaminants
• Find new signals when the signal is rare

• known unknowns: supernovae, 
strong lenses, transients, …

• unknown unknowns: eg. discovery 
of pulsars

credit: M. Lochner

https://github.com/MichelleLochner/astronomaly

anomaly

real

vs



CAMELS: an “MNIST” dataset for ML in Cosmology
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F. Villaescusa-Navarro



Simons Collaboration on “Learning the Universe”

Learning the Universe
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https://www.learning-the-universe.org/



Conclusions

◼ ML will help us solve cosmological problems that are intractable today

◼ With great power, come great responsibility! Astrophysical systems are 
complex and often not fully understood. Model misspecification can 
lead to issues and great care needs to be taken.

◼ Finally, for a comprehensive list of ML applications to cosmology, see 
https://github.com/georgestein/ml-in-cosmology
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Thanks!


