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What is the Intensity Frontier (IF)?
A subset: Neutrino Experiments
What are some of the physics questions we are after?

What are the challenges to answering those questions?
o w/ a bias on one question: measuring neutrino oscillations
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The Intensity Frontier

From Snowmass 2013

“The Intensity Frontier explores fundamental physics with intense sources and
ultra-sensitive detectors. It encompasses searches for extremely rare processes and
for tiny deviations from Standard Model expectations. Intensity Frontier experiments
use precision measurements to probe quantum effects. They typically investigate
new laws of physics that manifest themselves at higher energies or weaker
interactions than those directly accessible at high-energy particle accelerators.”
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Intensity Frontier 2.0 = Neutrino + Rare Process/Precision

NEUTRINO FRONTIER RARE PROCESSES AND PRECISION

MEASUREMENTS FRONTIER
NFO1: Neutrino Oscillations

NF02: Understanding Experimental Neutrino RF1: Weak decays of b and ¢ quarks

Anomalies RF2: Weak decays of strange and light quarks

NF03: Beyond Standard Model (BSM) RF3: Fundamental Physics in Small Experiments
NFO04: Neutrinos from natural sources RF4: Baryon and Lepton Number Violating Processes
NFO05: Neutrino properties RF5: Charged Lepton Flavor Violation

NFO06: Neutrino Interaction Cross Sections RF6: Dark Sector Studies at High Intensities

NFO7: Applications RF7: Hadron Spectroscopy

NFO08/TF11: Theory of Neutrino Physics
NFO09: Artificial Neutrino Sources
NF10: Neutrino Detectors
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Intensity Frontier 2.0 = Neutrino + Rare Process/Precision

Snowmass 21 Frontiers

NEUTRINO FRONTIER RARE PROCESSES AND PRECISION
MEASUREMENTS FRONTIER

NFO1: Neutrino Oscillations

NF02: Understanding Experimental Neutrino RF1: Weak decays of b and ¢ quarks

Anomalies RF2: Weak decays of strange and light quarks

NFO03: BSM RF3: Fundamental Physics in Small Experiments
NFO04: Neutrinos from natural sources RF4: Baryon and Lepton Number Violating Processes
NFO05: Neutrino properties RF5: Charged Lepton Flavor Violation

NFO06: Neutrino Interaction Cross Sections RF6: Dark Sector Studies at High Intensities

NFO7: Applications RF7: Hadron Spectroscopy

NFO08/TF11: Theory of Neutrino Physics

NFO09: Artificial Neutrino Sources _ .
NF10: Neutrino Detectors A very vast field to survey — | will stick closely to areas | am most

familiar, i.e a subset of Neutrino Frontier
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Key properties

e No electric charge

e Interacts only via weak force
(and gravity)

e \ery, very small mass: <eV

e Come in three “flavors” -- named from
what lepton made during certain
interactions (Charged-Current)
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Why Neutrinos

e The hope is that precision
measurement of neutrino
properties and behavior will show
cracks in the SM which point the
way to new physics

e These efforts center around the
neutrino mass ...
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Neutrino Oscillations: a brief History

e Along saga

e Starting with the Homestake
Experiment (1970 until 1994) and
culminating with measurements
in Super-Kamiokande (1999) and

Homestake Super—aiokande o SNO

Neutrino created in certain flavor ...

e Showed that neutrinos can
change flavor as they propagate

can later be
the Sudbury Neutrino * ~ detected in other flavor ...
Observatory (2001) * 7~ & . orlaterin original ...

PN
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Mass induced Flavor Oscillations

e Several ways to explain neutrino flavor changing, but accepted model that
has explained nearly all of the data* is that if neutrinos have a non-zero mass,
then the flavors of neutrinos can mix

e Furthermore, constraints tell us that this mass is very small

e s the neutrino mass mechanism different?

fermion masses NB: this seems weird
dre se be — but universe allowed
to be weird
U e Ce te .
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Connection to Old and New Physics

Ways to explaining very small Neutrino masses:

e Neutrinos are similar to the other leptons and quarks, i.e. are Dirac Fermions,
and have a very small coupling to the Higgs

e Neutrinos are different — Majorana Fermions — and couple with a different
Higgs Boson

e Neutrinos are Majorana and small mass due to effective couplings to new
physics at a very different energy scale (See Saw Mechanisms)

* Quick def: A Majorana Neutrino would mean a
neutrino and antineutrino are the same From de Gouvea. PITP 2017
(Majorana condition: W%, = Cyo¥%, = ¥y )
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https://static.ias.edu/pitp/2017/sites/pitp/files/degouvea.pdf

Other Questions

e Can we determine if the neutrino is Dirac or Majorana? (Yes! By seeing
neutrino-less double beta decay)

e Neutrino flavors mix: will quantifying their mixture give us hints for new
symmetries?

e Do neutrinos exhibit ) ) e
i It's unclear if any of these questions will point us to new
matter/anti-matter asy| physics - we need more information.

(but so far, SM neutrino CH y
e How many neutrinos ML/Al Techniques have a!ready |mproyed our ability to
_ answer such questions with the experiments we have
e Do neutrinos have shd - and we really on just begun

e Neutrino experiments require intense sources and large detectors — can search
for evidence of new particles (e.g. dark matter/dark sector)
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Observing Neutrinos

Neutrino properties dictate how we search for them. Two key ones:

e

No electric charge
=> observe indirectly 1

Only Weak Force
=> rare process

Try to observe and identity as many of the _ _
particles as possible coming from neutrino Need intense source of neutrinos
interactions. and/or large detector

(Avoid background particles if possible:
underground facilities, capabilities for rejection)

Tufts Colloquium




Neutrino Sources

Neutrinos are produced in several different sources — natural and artificial — and over a vast energy range

Figure I: Neutrino sources. Typical neutrino energy is shown. From BRN re port
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Detector Types

A wide-variety. Here are four broad classes though experiments often mix elements.

Trackers Cherenkov Detectors Scintillators
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Accelerator Neutrino Experiments

Many of the research challenges that ML has highly impacted have to do with experiments
accelerator neutrino experiments — and many in other experiments as well

Of their many physics goals, a primary objective is to make
precision measurements of neutrino oscillations.

Example DUNE

one part of the program: v, — v, and v, — ¥, in order to look for CP-violation

Far Site — SURF in Lead, SD Near Site — FNAL in Batavia, IL

Facility/Infrastructure and Far Detectors Facility/Infrastructure, Neutrino Beamline, StrongeSt OSCi//ation effeCt
andNearDeteclors expected after 1300 km: need
Sanford really intense beam + large
oy e detector (40kt LArTPC)

Bt Facility ==

Preferably large monolithic
detector (scalable) with good
particle discriminating power.
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Accelerator Neutrino Experiments

Far Site — SURF in Lead, SD Near Site — FNAL in Batavia, IL N t t d t d . )
Facility/Infrastructure and Far Detectors Facility/Infrastructure, Neutrino Beamline, ote i(wo eteC or eS’Qn .
and Near Detectors

i - Near detector measures rate
=cesheroali : — of neutrino interactions before
oscillations near beam source

Facility

Fermilab

Far detector measures rate
after oscillations

Both are Liquid Argon Time Projection Chambers - are class of tracking detectors
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Trackers

Promising applications of ML/Al in Neutrino physics applied to tracking detectors

Record 3D energy depositions as 2D projections which are very image-like: sensor
measurements naturally arranges into regular 2D array.

Pattern of energy deposits can help us infer a lot: particle type, momentum

LArTPCs: e.g. DUNE Segmented Scintillators: e.g. Nova/Minerva

3D trajectories  Anode wire plane

UV Y

Multiple 2D projections

L sensor-order

3D schematic of View from the top Particle 1
NOVA particle detector

Liquid Argon TPC

Cathode
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Challenges

ML/Al impacting research challenges common to many experiments

Reconstruction: are we getting all the information that we can
from our data, precisely and accurately?

Simulation/Modeling: can we translate physics to observables
faster? Can we better use data-driven methods?

Inference: are we testing our models against data as best as we
can while accounting properly for and mitigating our model
uncertainties?

Operations: are we saving the right events? Is the experiment
running optimally? Can we detect and make decisions faster?
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Challenges

Reconstruction: are we getting all the information that we can
from our data, precisely and accurately?

The bulk of the development in ML has been here
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Reconstruction

Broadly, reconstruction involves a sequence of algorithms to take raw detector data to relevant
observables.

Reduction of data into increasingly higher-level/summary representations.

Example: Reconstruction stages for parsing LArTPC data to find neutrinos

Typical LAITPC event topology
-3x2D o MicroBooNE 6.369x10?° POT, Preliminary
XN X g L Mot
. e . N article labels in a w % 5007000 1500 5000 2500
Slgnal Condltlonlng F ;tylﬁklebevlent % E Lx & Vu CC RES 1, p, m° Reconstructed neutrino energy (MeV)
“Hit” finding
ot Clustering (particles) Interaction Measurement
(first-stage summary) Observable
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ML Reconstruction

ML Approaches have been applied to several of these stages, effectively proposing higher-level
outputs directly from low-level inputs.

Taking advantage of “data” as algorithm, i.e. intermediate representations (features) are learned
through training a model to best output a given objective

Typical LArTPC event topology
-3x2D o MicroBooNE 6.369x10% POT, Preliminary

nueCC FC

/

= A A g " ;rh
=R XY W 1 ey
. iy . \g_i, . \ Pa 1ic{e labels in a & %*M \ % 500 7000 7500 5000 2500
Slgnal Condltlonlng ;t,,_“ke event * E {—OX = Vu CC RES 1, p, m° Reconstructed neutrino energy (MeV)
“Hit” finding
ot Clustering+particle ID Interaction Measurement
(first-stage summary) Observable
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Neutrino Flavor/Interaction Classification

X view

ppppp

ppppp

™ —yy

P sy

ppppp

Nearly raw data

j> v,CC
j> v, CC

>VNC

Highest-level
physics concept

Two projections of neutrino
interaction passed into
Convolutional Neural Network to
determine interaction type.

Used in analysis measuring
Vl'l’ % Ve

oscillations, so signal are
v, CC events

35% increase in signal efficiency
over previous methods.

JINST 11 P09001(2016)
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https://iopscience.iop.org/article/10.1088/1748-0221/11/09/P09001/meta

Neutrino Flavor/Interaction Classification

Classification CNN also applied to DUNE: Upcoming oscillation experiment aiming to measure CP-violation

DUNE Simulation

L

Wire Charge

(a) 1.6GeV CC .

(b) 22GeV NC 17+,

(¢) 24GeV NC 17°.

UNIVERSITY

Updated architecture, multi-task output

; SE-ResNet-34
Ve © Blocks 1-2

SE-ResNet-34
Blocks 1-2

; SE-ResNet-34
VRG22 Blocks 1-2

Improvement to previous selection.
Used in sensitivity estimates for DUNE
aaaaaaa Technical Design Report

Jec qe
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Blocks 3-N Jec p1s
Jec other
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rons
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output

See talks by S. Monsalve on Computer vision techniques and L. Whitehead
on Intensity Frontier Computer Vision Applications for more details PhysRevD.102.092003
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092003

Low/Intermediate-level Representations

CNNs have also found use producing lower-level outputs for downstream algorithms.
Why? Didn’t you show me how to get the answer already?

Reasons to produce low/intermediate-level representations
e Feed high-quality outputs more easily incorporated into downstream algorithms (“traditional” or ML-based)
e “Getting the right answer” uses physics which we have more confidence modeling:
e.g. particle propagation in matter vs. to neutrino-nucleus interactions
e Can find side-bands in data to check for effects from domain shift, i.e training on sim, applying on data
NB: Nova had a means for checking network using a control sample provided by another “near” detector

Examples:

Producing 3D energy deposits from 2D projections
Keypoints useful for seeding particle reconstruction
Labeling hits by particle type

Individual particle clusters

PhysRevD.102.092003
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092003

Signal Processing/ROI Finding
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CNNs helping to also find lower energy signals:
potentially addresses challenge of measuring low
energy deposits associated to neutrons or providing
charge calibration in DUNE

ArgoNeuT Run 806 Event 19509 @2010-01-20 01:30:28 UTC (collection view)

ArgoNeuT Run 806 Event 19509 @2010-01-20 01:30:28 UTC (collection view)
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https://iopscience.iop.org/article/10.1088/1748-0221/17/01/P01018/meta
https://iopscience.iop.org/article/10.1088/1748-0221/16/01/P01036/meta

Low-Level “Hit” Finding

f:— {k curv “ ML T Input waveform
Options: 2D vs. 3D f 1Y

§= —~ 7 = ’ / . n n
2750 2800 2850 2900 2950 3000 3050 3100 3150 . 3200

2D Hit finding: Fit Gaussians to Waveforms
in MicroBooNE LArTPC, reduction of event data size
from 20 Megapixel image to ~15k hits

From 2D to 3D: producing 3D hits, or spacepoints, as
first-level representation has advantages
e Primarily, clustering particles is easier as due to less
overlap/close clusters in 3D
e (Can use additional modality — optical information
— to reject backgrounds at earlier stage [JINST 16 P06043 (2021)]

Energy deposition of
two stacked images

PhysRevD.102.092003
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092003
https://iopscience.iop.org/article/10.1088/1748-0221/16/06/P06043/meta

Low-Level “Hit” Finding

For inferring 3D spacepoints: requires solving an Example: track parallel to the wire plane —
underspecified inverse problem — a prior is needed Pixels for track all show up in same row
to make progress. E.g. sparsity [JINST 16 P06043 (2021)] = =

Y (vertical)

|<X(Edrm) \

Highly degenerate
combinations for matching
pixels across wires to infer Y,Z
position: leads to large number
of ghost points
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https://iopscience.iop.org/article/10.1088/1748-0221/16/06/P06043/meta

Low-Level “Hit” Finding

Matching more than charge: learn correlated

Here DL is a good fit: learn patterns from data to patterns across planes
oo i , Plane 1 Plane 2
form “prior” to better resolve degeneracies :

LArMatch Net
CNN represents
content around
given pixel and
uses it to
determine L] st spce uer
ghost/true maime Sopans S z F
2DUNET 2D | CNN: convolutional neural network i ,§ of
(shared i‘::;’: ; zLNPET“ :Iﬁr::l;r:em :,n:nlar making pixel-wise outputs i £ g
weights) L e g 8}
£ i
¥ ll : e \ —— 5 ‘ : : osf ; :
i SRR } ANGIREERZ 1 . MicroBooNE : MicroBooNE
A 0 0 (X ) 70 0 -,.{-f ‘ ] o6f- Simulation o4F Simulation
II\DArieclgoml?r?:r';E' o ‘—\07 P T ) —0%—0 \\/ - T B | o8 Preliminary 03 Preliminary
g | \N@ I\’ “F f 0.2} :
o ee | 0o | N3 osb
b i ‘\ ‘ |\ | ' s I i i I I PR EFRFORI IR PO PO OIS I PPN OIS O
i I | 0 0.2 04 0.6 D:B 5 & 1 o 2 4 6 8 10 12 14 16 ‘!8 20
Bad triplet rejection distance from track axis (cm)
. ’ 5 \ 2 NPML 2020
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https://indico.slac.stanford.edu/event/377/contributions/1156/attachments/494/744/poster_nu2020_larmatch.pdf

Keypoints

Neutrino Vertex finding in LArTPC
Certain 2D or 3D locations are useful to seed reconstruction MicroBooNE simulation

—

e Track starts and End 0% [ S—
||
e Shower starts o . it N N -
e Location of Michel/Delta rays 2 ol g
. . — DNN
e Neutrino Interaction vertex 02 [;J —Trdional
et yr1
Point Proposal Network (on 3D voxels): subpixel resolution and high L R S a—

classification accuracy Distance [cm]
JINST 17 P01037 (2022)

[ HIP

104 1 MIP Michel | 0.18 5.58 2.62
é‘ 1 Shower 80
' 10° Delta| 0.17 7.04 121
a
° 3z 60 . . .
g10° = Shower e 004 004 Different IF effort, Minerva, focused on understanding
i E N . ions- -
i 3 i neutrino-nucleus interactions: mproved vertex findin
MIP| O. 0.25 0.03 . q .
Wﬁﬁw 2 using DNN + adversarial network to reduce bias from
o 3 2 - e 5 e REER 127 034 001 0.00 out-of-domain events  JINST 13 P11020 (2018)
Distance to the closest voxel of same type (px) & & & S o
Presicted fael Automated architecture optimization
Phys. Rev. D 104, 032004 (2022) JINST 17 T08013 (2022)
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https://iopscience.iop.org/article/10.1088/1748-0221/17/01/P01037/meta
https://iopscience.iop.org/article/10.1088/1748-0221/13/11/P11020
https://iopscience.iop.org/article/10.1088/1748-0221/17/08/T08013/meta
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004

Intermediate Targets: Shower/Track labeling

Goal: separate pixels into track-like (proton,muon,pion) and shower-like (electron, photon)

MicroBooNE
Data

CNN

Input Tensor

U-ResNet

MicroBooNE
Data

e

Yellow: track-like :

w

Used architecture that can
produce per-pixel labels.

U-(Res)Net builds in paths
for features at multiple
resolution to flow

PhysRevD.99.092001

Clustering/reco algorithms for
tracks and showers are different
due to much different topologies

NB: Improvements from per-image
class-balancing and importance weighting
for pixels with neighbors of a different class

For an approach using
Graph Neural Networks see:

EPJ Web of Conferences (CHEP 2021) 251, 03054 (2021)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.092001
https://www.epj-conferences.org/articles/epjconf/abs/2021/05/epjconf_chep2021_03054/epjconf_chep2021_03054.html

Checking Output on Data
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Track Score

= Sample: stopping muons
® Score distributions similar

® Robust to moderate
difference in images as
shown by peak pixel
distributions

MicroBooNE
Data vs. Simulation

[[] simutation

O pata

l : I | P e s
0. 20 40 60 S0 100 120 140 160 180 200
Peak Pixel Value

Acquired sample of
cosmic particles that
come to rest in the
detector — both in
data and simulation

Mostly muons, many
of which decay into
electrons

Use to check track
and shower labeling
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Sparse Submanifold Convolutions

LArTPC (and many other experiments) have sparse data, i.e. a vast majority (90%+) of sensor
output is zero or below threshold.

For CNNs - a lot of wasted computation where operations performed on input with all zeros.

Can perform efficient convolutions on sparse representation of images, i.e. a list of above
threshold pixels, but this efficiency is lost due to information “bleeding” across image

I:"- -.:I Sparsity reduced with
. regular convolutions
- I

Sparsity conserved with
submanifold convolutions

Sparse submanifold convolutions (SSC)
preserve sparsity — and thus efficiency —
by requiring that new information produced
only at locations of original input.

arxiv:1711.10275
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https://arxiv.org/abs/1711.10275

Sparse Submanifold Convolution Application

A SSC Network trained as an upgrade for MicroBooNE

e Performance improvement: Showers acc. 95.9%—99.6% and track 97.4% — 99.2%

e Why? Hypotheses: no need to determine dominating background class, information
maintains locality, larger input so less information loss due to being on the boundary

e Much more efficient: 10x lower in CPU time (~5 — ~0.5 s), 6x less RAM (~6 — ~1 GB)

e Deployable: Fit onto more FermiGrid nodes, can run on entire event image

Output of network on entire wireplane image » ,
Additional SSC studies for 3D

o LArTPC data

Shower

PhysRevD.102.012005

Different IF effort: SSC o , o ]
Network used on 3D o g) |y 7

4 voxel data for finding . @ﬁ 2 \\'/3}
L i signal events for Ov3g - “ i 1

30 cm / 10% improved T R

MicroBooNE Simulation X (mm) X (mm)
background rejection
PhysRevD.103.052012
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.052012
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.052012
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005

Sparse SSNet for LArTPC analysis

Sparse SSNet key in search for v,CC 1 electron + 1 proton exclusive channel

Aim was to search for signs of a low-energy
electron neutrino excess — another experiment
(MiniBooNE) had seen such an anomaly in the
same neutrino beam line [pPhysRevD.103.052002]

Shower+track pixels fed into a mixture of DL
and traditional algorithms

Algorithms relatively simple: using neighboring
shower and track pixel clusters winst 6. 02017 2021

Analysis competitive with other reco. algorithms
for given LEE signal model

HIP
— W
Shower

Convolutional
L Neural Nets

nBooNFE

MicroBooNE Data

Deep Learning based
Reconstruction

Events Observed / Predicted (no eLEE)

2.5 1

2.0 A

1.5

1.0 A

0.5 1

0.0

® MicroBooNE Observed
=~ Predicted, no eLEE (x =0.0)
= Predicted, w/ eLEE (x=1.0)

lellp
CCQE

leNpOm 1eOpOm  leX

Phys. Rev. Lett. 128, 241801

Phys. Rev. D 105, 112003

T. Wongjirad

SLAC SSI 2023 [08/09/2023]



https://link.aps.org/doi/10.1103/PhysRevLett.128.241801
https://link.aps.org/doi/10.1103/PhysRevD.105.112003
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.052002
https://iopscience.iop.org/article/10.1088/1748-0221/16/02/P02017

Clustering+Classification: Sparse Mask-RCNN

A key task is clustering hits (2D or 3D) into individual particles or into meaningful
groups of particles

For detectors near the surface, neutrino interactions are a very small fraction of the
cosmic background that passes through the detector
A modified version of the
Detectron network trained to
100 cm / locate cosmic clusters and

neutrino interactions.
MicroBooNE Data

ibrun: 34 Event: 1704

osmic 0.90

Changed several components
of this network to use sparse
submanifold convolutions

2099 JINST 17 PO9O1S Sparse Mask-RCNN outputs bounding box,
mask, and class score
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https://iopscience.iop.org/article/10.1088/1748-0221/17/09/P09015

Sparse Mask-RCNN for addressing backgrounds

Output from network can be used in minimal selection scheme to
augment baseline cosmic taggers

Note that baseline tagger already good, but incorporates timing
information from optical sensors to use (non-)coincidence between

clusters and the beam

TTTTTT

©

¥
w. (0.801,0.997) (0500, 0995)

o9 Reasons to believe

0.992 -

s Mask-RCNN and similar

o o o
g 8 g
%".‘q’.ag

099

Off-Beam Background Removed
I
Off-Beam Background Removed

o.sssi MicroBooNE 0.988 MicroBooNE . .
e Simulation e Simulation object detection methods

E —— WC Cosmic Tagger Alone , : —+— WC Cosmic Tagger Alone 3 1 1
0884 With sMask-RCNN 4 0'984; ~ WithsMask-RCNN WI" have trOUble Wlth

oo by o by o bon s boaaa laay 1 TR R 982l L1t 1 L PR B PENEEI EFTAT SR " " . . .
0882 g0 oa 0405 s 07 o8 os  °® oi o2 os oa 05 os 07 08 09 pa rticles within interactions

General Electron Neutrino Passed Low Energy Electron Neutrino Passed
(a) General electron neutrino sample (b) Low energy electron neutrino sample

2022 JINST 17 P09015
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https://iopscience.iop.org/article/10.1088/1748-0221/17/09/P09015

Object Detection Methods for Individual Particles

Issues derive from mismatch between bounding box and trajectories
e Two distinct objects can have essentially the same bounding box
e Objects often overlap
e These type of top-down detection methods often have trouble with small objects
e Potentially solvable with rotatable boxes ...

T. Wongjirad SLAC SSI 2023 [08/09/2023]



Instance+Semantic Segmentation
e Three component loss: pull together points that belong to the
same cluster, keep distance between clusters, and regularization

L = aLlvar + BLdist + YLreg, {—> inter-cluster push force
— _ /. < intra-cluster pull force
G N, 7t 4 5
1 1 < 2 i ':6 o “.‘ A B
Lvar = c Zl N, ;[max (0, [lc — xill = 6v)] .% o* e - L. ) o
c= = \ "\ . Y .\‘ /"\ j—— f
e R W T
Laist = m Z [max (0,264 — [[1cs — Hegll)] x s D T s @ |
ca,cg=1 \\\""""'i W .‘. .“ . ‘: C.'> l‘\ O O ,"‘
caFce ‘@ / /
N @ / g '
e AN
Leg = = 3 el . ® A
c—=I i P _ a7
'''' Mz
Equation credit: Dae Hyun K. @ Stanford Image credit: arXiv 1708.02551
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Network learns to push spacepoints from same particle into ball and
provides a centroid and radius to cluster the ball

Output of Net: re-embedded

Input w/ truth labels points and regions to include

(only for visualization, not

_ in clusters
provided to net of course) e
g
700 ..
I / T 05 r el
&0 . .
AQQ - .2
. 300 - .f ‘ ° P - ‘., .
100 \ 2 ~: - ° r' . .
O oo < »
A0 -
Q . o
0‘\00 ® 300 AN . . \Oe
'1«00 A Y0 Q° 0 . )
N & Sop . " s
y o % X y o X
P 2 6
. 5. See anxiv:200703083 u 2
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Shower Clustering

One challenge to shower clustering is that at the lower (<~1 GeV
neutrino energies) of DUNE or for experiments like MicroBooNE
showers are actually disconnected

20

£

One strategy is to use SPICE to find contiguous shower
sub-clusters and then piece together entire shower

4
S

)
am

Fragments

Input Graph

Node Update

Identifying 1 shower ... which consists of many fragments
e Interpret each fragment as a graph node + edges connect nodes in the same cluster
e Cast the problem to a classification of node (e.g. particle type) and edge (clustering)

Edge Update

) )
o° o®
< ® %% o°| .
‘X/’ '
o o
s i | |sssan o®
ok
®
% %
5 @
% o© e o ®
® ®

(77

Output graph

Groups
¥

eeeeeee

<

Primaries

-

38

Slide credit: K. Terao
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Interaction Clustering

Truth

T. Wongjirad

Edges with score > 0.5

Output of net is also primary label

for subfragments representing the
start of the shower

See F. Drielsma’s talk on Graph Neural
Networks Applications I (IF) for more!

Predicted clusters

oo e S B
y e 1ARI: 99.7%>

200
¥

25

I

= o
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Interaction Clustering

Can extend this to clustering interactions
Performance remains high, even with

higher multiplicities of interactions

1.00 TT -.1.—
I’ T [Z—I]T [_:J T Addresses a big challenge in

g DUNE: high multiplicity of neutrino
g 0.98
— ARI
0.97 | — Efficiency
—— Purity

Number of images

Top

DUNE: 3D imaging detector (LAITPC) observes i
a pile-up of dozens neutrino interactions per image 73“
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End-to-End 3D Voxel-based DL Chain

PPN Primaries Reference publications
A, Full chain (NeurlPS WS)
II]‘: N Public dataset
\
E : / 11 21 31 i
_ \ E \: Particles Interactions
o N\ 7 % 7
'\) \
/
~ UResNet Identification
=
i End-to-End optimizable chain
_ e ~1weeKk to train the full chain on a single GPU

— e A task typically takes teams + months~year effort
e Transfer-learning for multiple experiments!
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2D Particle Classification

Going back to raw 2D images — potentially still useful in conjunction with reconstruction in 3D

Here shower object missing trunk because of detector issues:
In two planes beginning of shower obscured for different reasons

Example LArMatch Event:
Run 5339 Subrun 115 Event 5764

Shower trunk obscured in both U and V
plane - leads to missing shower trunk in
3d hits, but seen by 2D CNN in Y plane

| |
- T

L L
I —

90 00—

- 3 ‘!
- . |

& | . i
0 ]

;o s B

- L T

MicroBooNE data

s/ | Preliminary
| /
/ | '4/ / /
r 0 | [
L T
/T(/ ‘T / 4/ \\J\ /
o | e == - S)d'm‘d/'@cr

— Reconstructed Nu Candidate
| 1 Track (green hits, cyan path)
1 Shower (copper hits, red line)

(;t"

= =
%o

Gap between vertex and shower usually
indicates the shower is a photon

T. Wongjirad
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2D Particle Classification

U-plane missing because of effect
involving long ionization clouds
moving past induction wire

Y-plane clearly shows ionization
between shower and vertex
— suggests shower is from electron

V-plane obscured due to
unresponsive wires

pBooNE _ pBooNE _ 4 pBooNE
BNB Data: Run 5339 Event 5764. March 7, 2016 BNB Data: Run 5339 Event 5764. March 7, 2016 BNB Data: Run 5339 Event 5764. March 7, 2016

T. Wongjirad SLAC SSI 2023 [08/09/2023]
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2D Particle Classification

Provide “Prong CNN” both a plane 0 prong plane 1 prong plane 2 prong
masked “prong image” containing wBoad®

only those pixels consistent with 3D

cluster

AND

“Context” image with crop around
interaction

plane 0 all plane 1 all plane 2 all
(cosmic tagged clusters are s
masked in both)

Allow network to recognize and
estimate upstream clustering errors

*Nova does something similar

T. Wongjirad SLAC SSI 2023 [08/09/2023]
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2D Particle Classification

Performance Metrics validation Sample Accuracy Statistics

0.1% 0.4% 0.1%

Fraction
classified 83.5% 4.8%
Predicted vs. True Completeness, Validation Sample Predicted vs. True Purity, Validation Sample as electrons

Fraction
classified 13.3% 94.7% 0.1% 0.2% 0.2%
as photons

predicted purity

Fraction
classified 0.4% 0% 93.6% 12.1% 0.2%
as muons

predicted completeness

0.6—

Fraction
classified 2.7% 0.4% 6.1% 85.9% 1.4%
as pions

0.4—

02— ’
I i Fraction
M BooNE In P
crosoofiEinTrooress g classified 0.2% 0.2% 0.2% 1.5% 98.2%
P BRI AR R as protons
02 0.4 06

= MicroBooNE In Progress
. R B |

0.8 1 0.8 1
true completeness true purity

*Output of network used in next-generation MicroBooNE analysis - that combines larmatch outputs + 3D
clustering: early results suggest its competitive with current state-of-art analysis for nue-inclusive selection

UNIVERSITY
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2D Particle Classification

Doing image manipulations to study use of context

plane 1 prong plane 1 prong
Prong under consideration
seems attached to vertex,
but gap potentially obscured
Using such physics is good
- but must be careful with
understanding biases

e coming from neutrino

plane 1 all - interaction generator

However, there is a second
shower in the context image

Currently explorin
Remove second photon, y exploring

prong photon score
drops

electron score = -3.63]photon score = -0.03 | electron score = -1.53 photon score = -0.25 |

T. Wongjirad SLAC SSI 2023 [08/09/2023]
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Challenges

Lot’s of progress over less than a decade or so

... still lot’s of areas to tackle for which lot’s of ongoing effort

Simulation/Modeling: can we translate physics to observables
faster? Can we better use data-driven methods?

Inference: are we testing our models against data as best as we
can while accounting properly for and mitigating our model
uncertainties?

Operations: are we saving the right events? Is the experiment
running optimally? Can we detect and make decisions faster?

Fast ML on FPGAs to
implement special rare
process triggers

frai.2022.855184
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https://doi.org/10.3389/frai.2022.855184

Challenges

Simulation/Modeling: can we translate physics to observables
faster? Can we better use data-driven methods?

Like in other frontiers, generating simulated data is a bottleneck of analyses

e Individual events can take upwards of ~5 mins/event+ for MicroBooNE TPC
with simulated cosmics + neutrino interaction

e Data driven methods are used to get better estimate: in MicroBooNE and SBN
experiments which are on surface, cosmic background data is collected and
used in simulated data by adding neutrino interaction — but cannot save
enough of these events due to processing and storage constraints

T. Wongjirad SLAC SSI 2023 [08/09/2023]



Simulations - Generative Models

Score-based Generative Modeling shows promise for generating LArTPC-like images

Forward SDE (data = noise) Reverse SDE (noise = data)

score functlon

dX, = £(X,, t)dt + g(t)dW, 4X, = [£(X..5) + ¢ (s [V log p(X . Jlds + g(s)AW,

Model generation as the reverse of a diffusion process bringing
data images to noise

T. Wongjirad SLAC SSI 2023 [08/09/2023]



Simulations - Generative Models

Which set, left or right, is training images — which are generated?

More details in next Wed. talk: “Generative Model Applications 3”

Tufts T. Wongjirad SLAC SSI 2023 [08/09/2023]
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Simulations - Data Driven/Differentiable

Differentiable (surrogate) simulations save time by allowing a way to possible reweight MC events
rather than generating additional samples with variation in detector physics parameters

Also enables simulation-based inference for a number of exciting applictions

Static map (top) v.s. SIREN

g Optical Photon
Transport
using
| Differentiable
Surrogate
(SIREN)

Neural scene
representation

co < : Dooeoouﬂgeooogz °°: 2 "
I e o e e e o o o o (alternative: NeRF
. B Pes%%e0" a0 Jan en en o eo eo | B inc. differentiable

2 fem)

T. Wongjirad SLAC SSI 2023 [08/09/2023]
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https://arxiv.org/abs/2211.01505

One more Challenge

Accelerating Development: Are we providing enough tools to
the community to enable new ideas and new contributors?

T. Wongjirad SLAC SSI 2023 [08/09/2023]



LArTPC Neutrino Interaction (Simulation) Dataset

MicroBooNE has released some LArTPC simulations: cosmic data overlaid with simulated neutrino interaction

Access point
* Entry point is the MicroBooNE website:

MicroBooNE

Public Datasets
:

and artroot, targating users that aro famillar with

top of

10 2023/05/09 G. Cerati (FNAL)

- https://microboone.fnal.gov/documents-publications/public-datasets/

Description

Links to Zenodo

Link to documentation

Info about license and citation

2% Fermilab

T. Wongjirad SLAC SSI 2023 [08/09/2023]




LArTPC Neutrino Interaction (Simulation) Dataset

Another public dataset of 3D voxels along with simple 2D projections

https://arxiv.org/abs/2006.01993

& osfio

$i2 OSFHOME v

LArTPC 2D/3D - Simulation - Particle Se... Metadata ~ Files ~ Wiki  Analytics  Registrations

Particle Imaging in Liquid Argon (PILArNet) /

LArTPC 2D/3D - Simulation - Particle
Segmentation & Clustering

Contributors: DeeplLearnPhysics

Date created: 2018-12-04 06:43 PM | Last Updated: 2020-07-02 01:31 PM
Identifier: DOI 10.17605/0OSF.I0/VRUZP

Category: € Data

Description: This sub-project is organized by DeepLearnPhysics (www.deeplearnphysics.org), and is a part of a bigger project to share publid

imaging detector. It is particularly aimed for developing pixel-level particle classification technique for pixel-type (=3D readout) LArTPC.

License: CC-By Attribution 4.0 International @

https://osf.io/vruzp

UNIVERSITY
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https://osf.io/vruzp

ML techniques have already impacted the physics program of several
neutrino experiments

Many develops across experiments should provide further impact
Developments have been somewhat focused on reconstruction

But there are still other research challenges that ML might help to advance
Cross pollination between experiments and frontiers will surely accelerate
progress

T. Wongjirad SLAC SSI 2023 [08/09/2023]



Backups
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LArTPC Primer
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Capturing Neutrino Interaction Images w/ LArTPCs

1. Charged particles interact in Ar

* Jonize electrons

* Produce scintillation light
2. Ionized e- drift toward anode
3. Wire planes detect drift e-

X=25m

Cathode @ 70 kV
(plate)

Electric Field Anode
~270 V/em (wire plane)

T. Wongjirad

WweT=A

MicroBooNE TPC
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Capturing Neutrino Interaction Images w/ LArTPCs

1. Charged particles interact in Ar X=25m
¢ [onize electrons

* Produce scintillation light A ne Utri gle;
2. Ionized e- drift toward anode ( d as h e d g rey)
passes into the

3. Wire planes detect drift e-

WweT=A

s’ 7 detector and
/ interacts
/ & producing
@ charged particles
(solid yellow)
| nviem | |witcpame

T. Wongjirad UM Amherst Seminar 5/9/2023



Capturing Neutrino Interaction Images w/ LArTPCs

1. Charged particles interact in Ar < X=25m > )
* Tonize electrons * Charged particles produce
® Produce scintillation light

2. Tonized - drift toward anode < ionization electrons: tell us

3. Wire planes detect drift e- KA s .[', -

el 5 path of particle
IKKK 7 Electrons
Scintillation Light % @Ps -
A Also produces light: tells
’/' Scintillation Light .
V aecteaby P |5 time of the event
/4
Cathode @ 70 kV Electric Field Anode
(plate) ~270 V/em (wire plane)

UM Amherst Seminar 5/9/2023
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Capturing Neutrino Interaction Images w/ LArTPCs

1. Charged particles interact in Ar X=25m

* Jonize electrons « 7'y . .

* Produce scintillation light I O Nniz atl O N e I e CtrO N S
2. Ionized e- drift toward anode iM e 5 g <

. N ax dari me = 2.2 ms .
3. Wire planes detect drift e- é d nf‘t tOW a rd S
B
wireplanes

Scintillation Light

/ detected by PMTs
Yy
/
/4
Cathode @ 70 kV Electric Field Anode
(plate) ~270 V/em (wire plane)

T. Wongjirad UM Amherst Seminar 5/9/2023



Capturing Neutrino Interaction Images w/ LArTPCs

U,

Y
| 4

U plane V plane Y plane 8256 wire§ W{ pitch = 3m_m
(induction) (induction) (collection) (Y, Z) = coincidence on wire

T. Wongjirad UM Amherst Seminar 5/9/2023



Capturing Neutrino Interaction Images w/ LArTPCs

Anode wire plane

uvy
Liquid Argon TPC
Cathode :
Plane \
— A e i
" Edrift~500V/cm il

T. Wongjirad

Recording wire
signals over time,

detector produces
image-like data

UM Amherst Seminar 5/9/2023



Capturing Neutrino Interaction Images w/ LArTPCs

1. Charged particles interact in Ar X=25m . .
+ Toiiing SISEEtoE 7 Capture 3 projection
¢ Produce scintillation light Drift Time = X position & : : :
2. Ionized e- drift toward anode T = i < Images Wlth wire planes
3. Wire planes detect drift e- / ,'], .
I 2 Can solver inverse
S oy L problem to recover 3D
info. to get 3D ™ Hits on )
reconstruction. ’ | intersecting wires energy de POS Its
/ gives us (Y,Z) ) ) ) .
/ ), lonization signals on wires
;" . . . . .
e coincident in time provide
/S . .
_,&f/‘ info for (Y,Z) position
Y
4"'
V X position given by time
Cathode @ 70 kV § | Electric Field Anode | “Cold” (in LAr) readout electronics del ay from | 19 ht si gna |
(plate) ~270 V/em (wire plane) greatly reduces the noise level

T. Wongjirad UM Amherst Seminar 5/9/2023



Capturing Neutrino Interaction Images w/ LArTPCs

Plane 1 Plane 2 Plane 3

“‘——

wire number

Example of data event in MicroBooNE. View of same event for each projection.

Color scale indicates amount of ionization electrons seen on wire at given time

Tufts T. Wongjirad UM Amherst Seminar 5/9/2023
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Capturing Neutrino Interaction Images w/ LArTPCs

Flavor determined from finding partner lepton (muon,electron) produced in interaction

Neutrino energy inferred from momenta of resulting particles

Tufts T. Wongjirad UM Amherst Seminar 5/9/2023

UNIVERSITY



Neutrino Oscillation Analysis

Am* .:‘l }:. v -nucleus
0 >l el interaction model
Detector Sim <] (Truth) final-state particles
{p1,p2,D3,--.Pn}
Detector Outputs

lonization

[> Reconstruction
N .

Optical

Observables

MicroBooNE 6.369x 10%° POT, Preliminary

RLRRAAN LA LAY LA R LA

nueCC FC

i

Em #ﬂf # v

500 1000 1500 2000 2500
nstructed neutrin gy (MeV)

(reco) final-state particles

{ﬁlaﬁ%ﬁ& .o ﬁm}

gy

Calculate
observables
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Neutrino Oscillations

Neutrino oscillations occur because
¢ neutrinos have mass
e and flavor states are mixture of mass states

Neutrinos created/interact in flavor states
They propagate in their mass states

Don’t have to line up!

T. Wongjirad SLAC SSI 2023 [08/09/2023]



Neutrino Oscillation: 2-flavor example

Neutrino oscillations occur because
® neutrinos have mass
e and flavor states are mixture of mass states

Flavor States Mixing Matrix (U) Mass States

Example 2 v v,
model ( Vp )

( cosf siné ) ( v ) w/mass m;

V2

—sinf cosé W/ mass ms

In 2D, simple rotation
|Ve) = cosf|vy) + sinf|vs)

lv,) = —sinf|vy) + cosO|va)

T. Wongjirad SLAC SSI 2023 [08/09/2023]



Neutrino Oscillation: 2-flavor example

Let's start with a neutrino created in flavor state |v,.)

T. Wongjirad SLAC SSI 2023 [08/09/2023]



Neutrino Oscillation: 2-flavor example

Probability of transition from flavor v, to v, :

Py = ve) = [(ve|lUpnamsU ) Upnasg Vi) P

oscillatory prob function

) Key signature is
of L/E

& =~

— sin? 26 sin? (([1.27 GeV km ™' Am?

; -y 3¢
Result is g mixing angle, 6,
. . governs amplitude
smtl;sg_llqal L.
robability, s
- p’[' g L/é § mass splitting, Anm?,
unction o 5 el governs frequency

distance
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Neutrino Oscillation: 2-flavor example

Probability of transition from flavor v, to v, :

Py = ve) = [(ve|lUpnamsU ) Upnasg Vi) P

oscillatory prob function

) Key signature is
of L/E

& =~

— sin? 26 sin? (([1.27 GeV km ™' Am?

; -y 3¢
Result is g mixing angle, 6,
. . governs amplitude
smtl;sg_llqal L.
robability, s
- p’[' g L/é § mass splitting, Anm?,
unction o 5 el governs frequency

distance
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Neutrino nucleon Interactions

Never scattering on a free quark. Vu W
Dominant interactions at V,, at E, ~1GeV @} g ‘h ; (@
(typical flavor and energy for accelerator V) o

u \A™)
Vy W
3 leading quark {(x F>0)
W u )
:jl 5% u hadronization
P d—p

remnant diquark (xr<0)
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Neutrino Oscillations

Want to know state at time, f, so we need to apply the
propagator, U(t), on the|v,) inthe mass basis

U)Uprsng|Vu) = —sinfe " F1u1) + cos Be ™ 72F |vy)

E = \/p? + m?



Neutrino Oscillations

Want to know state at time, t, so we need to apply the
propagator, U(t), on the|r,) inthe mass basis

UUprrnglvu) = —sine™ Ert ) + cos e 2t |uy)

E=+/p*+m?
what we have are two states oscillating at slightly two
frequencies due to the slightly different masses

AV VUV VWU

out-of-phase in-phase out-of-phase in-phase out-of-phase

with a slight shift in frequency, you get periods where two
waves in phase for some time, and out of phase for others



Neutrino Oscillations

Want to know state at time, t, so we need to apply the
propagator, U(t), on the|v,,) inthe mass basis

U UprsnglVu) = —sinfe™ 1 |uy) + cos e~ 28 |uy)
E = +/p? +m?

what we have are two states oscillating at slightly two
frequencies due to the different masses

A,

Classical analogue is the beat-frequency phenomenon

in-phase ___in-phase

out-of-phase _



Neutrino Oscillations

Probability of transition from flavor v, to v, :
P(I/M — I/e) = ’<V€|UPNMSU(t)UE]{/MS|VM>|2

— sin® 26 sin” <([1.27 GeV km_l]Am2§)

. E‘ 1-:\ = =

Result is § P\ L ; \

g 5 / /
sinusoidal g & \,’ \/ \/ e \X/ \)
probability s | M A\ A N /N

i ’ § /U \ / \\ /’ P / W 4

function of L/E § (Ll i ¥4 A



Other experiments analyze the pattern of Cherenkov Radiation to infer particle
momenta and type.

Spatial arrange of optical sensors not grid-like

Example: Super-Kamiokande, T2K, Hyper-K Example: IceCube Observing atmospheric +
astrophysical neutrinos
f..’.z.m 50
Muons S o s g |
(sharp ring) o ; *s Muon PO AT |
e, ‘{f. (from v,CC) \“\bé M §
erase " '
@ : . :
EM showers ‘m o. ..0.0 ¢ w0 Electron or Tau e
(fuzzy ring) » : H : =2 (from v.CC or v.CC )
s ¥
* eaate" *
L ]

T. Wongjirad
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