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● What is the Intensity Frontier (IF)?
● A subset:  Neutrino Experiments
● What are some of the physics questions we are after?
● What are the challenges to answering those questions?

○ w/ a bias on one question: measuring neutrino oscillations



The Intensity Frontier
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“The Intensity Frontier explores fundamental physics with intense sources and 
ultra-sensitive detectors. It encompasses searches for extremely rare processes and 
for tiny deviations from Standard Model expectations. Intensity Frontier experiments 
use precision measurements to probe quantum effects. They typically investigate 
new laws of physics that manifest themselves at higher energies or weaker 
interactions than those directly accessible at high-energy particle accelerators.”

From Snowmass 2013



Intensity Frontier 2.0 = Neutrino + Rare Process/Precision
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NEUTRINO FRONTIER

NF01: Neutrino Oscillations
NF02: Understanding Experimental Neutrino 
Anomalies
NF03: Beyond Standard Model (BSM)
NF04: Neutrinos from natural sources
NF05: Neutrino properties
NF06: Neutrino Interaction Cross Sections
NF07: Applications
NF08/TF11: Theory of Neutrino Physics
NF09: Artificial Neutrino Sources
NF10: Neutrino Detectors

RARE PROCESSES AND PRECISION 
MEASUREMENTS FRONTIER

RF1: Weak decays of b and c quarks
RF2: Weak decays of strange and light quarks
RF3: Fundamental Physics in Small Experiments
RF4: Baryon and Lepton Number Violating Processes
RF5: Charged Lepton Flavor Violation
RF6: Dark Sector Studies at High Intensities
RF7: Hadron Spectroscopy
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NEUTRINO FRONTIER

NF01: Neutrino Oscillations
NF02: Understanding Experimental Neutrino 
Anomalies
NF03: BSM
NF04: Neutrinos from natural sources
NF05: Neutrino properties
NF06: Neutrino Interaction Cross Sections
NF07: Applications
NF08/TF11: Theory of Neutrino Physics
NF09: Artificial Neutrino Sources
NF10: Neutrino Detectors

RARE PROCESSES AND PRECISION 
MEASUREMENTS FRONTIER

RF1: Weak decays of b and c quarks
RF2: Weak decays of strange and light quarks
RF3: Fundamental Physics in Small Experiments
RF4: Baryon and Lepton Number Violating Processes
RF5: Charged Lepton Flavor Violation
RF6: Dark Sector Studies at High Intensities
RF7: Hadron Spectroscopy

A very vast field to survey – I will stick closely to areas I am most 
familiar, i.e a subset of Neutrino Frontier

Snowmass 21 Frontiers



Neutrinos
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Key properties

● No electric charge
● Interacts only via weak force 

(and gravity)
● Very, very small mass: <eV
● Come in three “flavors” -- named from 

what lepton made during certain 
interactions (Charged-Current)



Why Neutrinos
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● The hope is that precision 
measurement of neutrino 
properties and behavior will show 
cracks in the SM which point the 
way to new physics

● These efforts center around the 
neutrino mass …



Neutrino Oscillations: a brief History
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● A long saga
● Starting with the Homestake 

Experiment (1970 until 1994) and 
culminating with measurements 
in Super-Kamiokande (1999) and 
the Sudbury Neutrino 
Observatory (2001)

● Showed that neutrinos can 
change flavor as they propagate

Neutrino created in certain flavor ...
can later be 
detected in other flavor ...

or later in original ...

Homestake Super-Kamiokande SNO



Mass induced Flavor Oscillations
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● Several ways to explain neutrino flavor changing, but accepted model that 
has explained nearly all of the data* is that if neutrinos have a non-zero mass, 
then the flavors of neutrinos can mix

● Furthermore, constraints tell us that this mass is very small
● Is the neutrino mass mechanism different?

NB: this seems weird 
– but universe allowed 

to be weird



Connection to Old and New Physics
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Ways to explaining very small Neutrino masses:

● Neutrinos are similar to the other leptons and quarks, i.e. are Dirac Fermions, 
and have a very small coupling to the Higgs 

● Neutrinos are different – Majorana Fermions – and couple with a different 
Higgs Boson

● Neutrinos are Majorana and small mass due to effective couplings to new 
physics at a very different energy scale (See Saw Mechanisms)

From de Gouvea, PITP 2017
* Quick def: A Majorana Neutrino would mean a 
neutrino and antineutrino are the same
(Majorana condition:                                        )

https://static.ias.edu/pitp/2017/sites/pitp/files/degouvea.pdf


Other Questions
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● Can we determine if the neutrino is Dirac or Majorana? (Yes! By seeing 
neutrino-less double beta decay)

● Neutrino flavors mix: will quantifying their mixture give us hints for new 
symmetries?

● Do neutrinos exhibit CP-violation – potential associations to answering the 
matter/anti-matter asymmetry via leptogenesis 
(but so far, SM neutrino CP-violation not a necessary nor sufficient condition)

● How many neutrinos are there?
● Do neutrinos have short-range, non-standard model interactions?
● Neutrino experiments require intense sources and large detectors – can search 

for evidence of new particles (e.g. dark matter/dark sector)

It’s unclear if any of these questions will point us to new 
physics - we need more information.

ML/AI Techniques have already improved our ability to 
answer such questions with the experiments we have 
– and we really on just begun



Observing Neutrinos
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No electric charge 
=> observe indirectly

Only Weak Force
=> rare process

Neutrino properties dictate how we search for them. Two key ones:

Need intense source of neutrinos 
and/or large detector

Try to observe and identity as many of the 
particles as possible coming from neutrino 
interactions.

(Avoid background particles if possible: 
underground facilities, capabilities for rejection)



Neutrino Sources
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Neutrinos are produced in several different sources – natural and artificial – and over a vast energy range

SLAC SSI 2023 [08/09/2023]



Detector Types
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Trackers Cherenkov Detectors Scintillators

Solid-State/Crystals 

A wide-variety. Here are four broad classes though experiments often mix elements.

SLAC SSI 2023 [08/09/2023]



Accelerator Neutrino Experiments
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Many of the research challenges that ML has highly impacted have to do with experiments 
accelerator neutrino experiments – and many in other experiments as well

Of their many physics goals, a primary objective is to make 
precision measurements of neutrino oscillations.

Example DUNE

one part of the program:                and                in order to look for CP-violation

SLAC SSI 2023 [08/09/2023]

Strongest oscillation effect 
expected after 1300 km: need 
really intense beam + large 
detector (40kt LArTPC)

Preferably large monolithic 
detector (scalable) with good 
particle discriminating power. 



Accelerator Neutrino Experiments
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Note two detector design:

Near detector measures rate 
of neutrino interactions before 
oscillations near beam source

Far detector measures rate 
after oscillations

Both are Liquid Argon Time Projection Chambers - are class of tracking detectors



Trackers
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Promising applications of ML/AI in Neutrino physics applied to tracking detectors

Record 3D energy depositions as 2D projections which are very image-like: sensor 
measurements naturally arranges into regular 2D array. 

Pattern of energy deposits can help us infer a lot: particle type, momentum

SLAC SSI 2023 [08/09/2023]

LArTPCs: e.g. DUNE Segmented Scintillators: e.g. Nova/Minerva
3D trajectories

Multiple 2D projections

tim
e

sensor order



Challenges
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ML/AI impacting research challenges common to many experiments

SLAC SSI 2023 [08/09/2023]

Reconstruction: are we getting all the information that we can 
from our data, precisely and accurately?

Simulation/Modeling: can we translate physics to observables 
faster? Can we better use data-driven methods?

Inference: are we testing our models against data as best as we 
can while accounting properly for and mitigating our model 
uncertainties?

Operations: are we saving the right events? Is the experiment 
running optimally? Can we detect and make decisions faster?



Challenges

T. Wongjirad 19SLAC SSI 2023 [08/09/2023]

Reconstruction: are we getting all the information that we can 
from our data, precisely and accurately?

The bulk of the development in ML has been here



Reconstruction

T. Wongjirad 20SLAC SSI 2023 [08/09/2023]

Broadly, reconstruction involves a sequence of algorithms to take raw detector data to relevant 
observables.

Reduction of data into increasingly higher-level/summary representations. 

Example: Reconstruction stages for parsing LArTPC data to find neutrinos

Signal conditioning
“Hit” finding

(first-stage summary) Clustering (particles) Interaction Measurement
Observable



ML Reconstruction
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ML Approaches have been applied to several of these stages, effectively proposing higher-level 
outputs directly from low-level inputs.

Taking advantage of “data” as algorithm, i.e. intermediate representations (features) are learned 
through training a model to best output a given objective

Signal conditioning
“Hit” finding

(first-stage summary) Clustering+particle ID Interaction Measurement
Observable



Neutrino Flavor/Interaction Classification
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JINST 11 P09001(2016) 

Two projections of neutrino 
interaction passed into 
Convolutional Neural Network to 
determine interaction type.

Used in analysis measuring 

oscillations, so signal are
                events  

35% increase in signal efficiency 
over previous methods.

X view Y view

Nearly raw data
Highest-level
physics concept

https://iopscience.iop.org/article/10.1088/1748-0221/11/09/P09001/meta


Neutrino Flavor/Interaction Classification
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PhysRevD.102.092003 

Classification CNN also applied to DUNE: Upcoming oscillation experiment aiming to measure CP-violation

Updated architecture, multi-task output Improvement to previous selection.
Used in sensitivity estimates for DUNE 
Technical Design Report

See talks by S. Monsalve on Computer vision techniques and L. Whitehead 
on Intensity Frontier Computer Vision Applications for more details

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092003


Low/Intermediate-level Representations
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PhysRevD.102.092003 

CNNs have also found use producing lower-level outputs for downstream algorithms.

Why? Didn’t you show me how to get the answer already? 

Reasons to produce low/intermediate-level representations
● Feed high-quality outputs more easily incorporated into downstream algorithms (“traditional” or ML-based)
● “Getting the right answer” uses physics which we have more confidence modeling: 

e.g. particle propagation in matter vs. to neutrino-nucleus interactions
● Can find side-bands in data to check for effects from domain shift, i.e training on sim, applying on data

NB: Nova had a means for checking network using a control sample provided by another “near” detector 

Examples:
● Producing 3D energy deposits from 2D projections
● Keypoints useful for seeding particle reconstruction
● Labeling hits by particle type
● Individual particle clusters

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092003


Signal Processing/ROI Finding
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JINST 17 P01018 (2022) JINST 16 P01036 (2021)

CNNs are helping to refine 
pre-preprocessing of waveforms

Mitigates detector effects that 
can remove signals

CNNs helping to also find lower energy signals: 
potentially addresses challenge of measuring low 
energy deposits associated to neutrons or providing 
charge calibration in DUNE

https://iopscience.iop.org/article/10.1088/1748-0221/17/01/P01018/meta
https://iopscience.iop.org/article/10.1088/1748-0221/16/01/P01036/meta


Low-Level “Hit” Finding
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PhysRevD.102.092003 

Options: 2D vs. 3D

2D Hit finding: Fit Gaussians to Waveforms
in MicroBooNE LArTPC, reduction of event data size
from 20 Megapixel image to ~15k hits 

From 2D to 3D: producing 3D hits, or spacepoints, as 
first-level representation has advantages
● Primarily, clustering particles is easier as due to less 

overlap/close clusters in 3D
● Can use additional modality – optical information 

– to reject backgrounds at earlier stage [JINST 16 P06043 (2021)]

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092003
https://iopscience.iop.org/article/10.1088/1748-0221/16/06/P06043/meta


Low-Level “Hit” Finding
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For inferring 3D spacepoints: requires solving an 
underspecified inverse problem  – a prior is needed 
to make progress. E.g. sparsity 

Example: track parallel to the wire plane → 
Pixels for track all show up in same row

Highly degenerate 
combinations for matching 

pixels across wires to infer Y,Z 
position: leads to large number 

of ghost points

[JINST 16 P06043 (2021)]

https://iopscience.iop.org/article/10.1088/1748-0221/16/06/P06043/meta


Low-Level “Hit” Finding
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Here DL is a good fit: learn patterns from data to 
form “prior” to better resolve degeneracies

Plane 1 Plane 2
Matching more than charge: learn correlated 

patterns across planes

NPML 2020

LArMatch Net
CNN represents 
content around 
given pixel and 
uses it to 
determine 
ghost/true  

https://indico.slac.stanford.edu/event/377/contributions/1156/attachments/494/744/poster_nu2020_larmatch.pdf


Different IF effort, Minerva, focused on understanding 
neutrino-nucleus interactions: mproved vertex finding 
using DNN + adversarial network to reduce bias from 
out-of-domain events

Automated architecture optimization

Keypoints

T. Wongjirad 29SLAC SSI 2023 [08/09/2023]

Certain 2D or 3D locations are useful to seed reconstruction
● Track starts and End
● Shower starts
● Location of Michel/Delta rays
● Neutrino Interaction vertex

JINST 17 P01037 (2022)

JINST 13 P11020 (2018)

JINST 17 T08013 (2022)

Point Proposal Network (on 3D voxels): subpixel resolution and  high 
classification accuracy 

Phys. Rev. D 104, 032004 (2022)

Neutrino Vertex finding in LArTPC

https://iopscience.iop.org/article/10.1088/1748-0221/17/01/P01037/meta
https://iopscience.iop.org/article/10.1088/1748-0221/13/11/P11020
https://iopscience.iop.org/article/10.1088/1748-0221/17/08/T08013/meta
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004


For an approach using 
Graph Neural Networks see:

Intermediate Targets: Shower/Track labeling
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Goal: separate pixels into track-like (proton,muon,pion) and shower-like (electron, photon)

CNN Yellow: track-like
Cyan: shower-like

Clustering/reco algorithms for 
tracks and showers are different 
due to much different topologies

NB: Improvements from per-image 
class-balancing and importance weighting 
for pixels with neighbors of a different class

Used architecture that can 
produce per-pixel labels.

U-(Res)Net builds in paths 
for features at multiple 
resolution to flow 

PhysRevD.99.092001

EPJ Web of Conferences (CHEP 2021) 251, 03054 (2021)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.092001
https://www.epj-conferences.org/articles/epjconf/abs/2021/05/epjconf_chep2021_03054/epjconf_chep2021_03054.html


Checking Output on Data
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Acquired sample of 
cosmic particles that 
come to rest in the 
detector – both in 
data and simulation

Mostly muons, many 
of which decay into 
electrons

Use to check track 
and shower labeling



LArTPC (and many other experiments) have sparse data, i.e. a vast majority (90%+) of sensor 
output is zero or below threshold.

For CNNs - a lot of wasted computation where operations performed on input with all zeros.

Can perform efficient convolutions on sparse representation of images, i.e. a list of above 
threshold pixels, but this efficiency is lost due to information “bleeding” across image

Sparse submanifold convolutions (SSC)
preserve sparsity – and thus efficiency –
by requiring that new information produced
only at locations of original input. 

Sparse Submanifold Convolutions
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arxiv:1711.10275

Sparsity reduced with 
regular convolutions

Sparsity conserved with 
submanifold convolutions

https://arxiv.org/abs/1711.10275


Sparse Submanifold Convolution Application 
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PhysRevD.103.052012

A SSC Network trained as an upgrade for MicroBooNE

● Performance improvement: Showers acc. 95.9%→99.6% and track 97.4% → 99.2%
● Why? Hypotheses: no need to determine dominating background class, information 

maintains locality, larger input so less information loss due to being on the boundary
● Much more efficient: 10x lower in CPU time (~5 → ~0.5 s), 6x less RAM (~6 → ~1 GB)
● Deployable: Fit onto more FermiGrid nodes, can run on entire event image

Output of network on entire wireplane image

Different IF effort: SSC 
Network used on 3D 
voxel data for finding 
signal events for 0𝝂𝜷𝜷 - 
10% improved 
background rejection

PhysRevD.103.052012

PhysRevD.102.012005Additional SSC studies for 3D 
LArTPC data

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.052012
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.052012
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Sparse SSNet for LArTPC analysis
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Sparse SSNet key in search for              1 electron + 1 proton exclusive channel 

Aim was to search for signs of a low-energy 
electron neutrino excess – another experiment 
(MiniBooNE) had seen such an anomaly in the 
same neutrino beam line

Shower+track pixels fed into a mixture of DL 
and traditional algorithms

Algorithms relatively simple: using neighboring 
shower and track pixel clusters

Analysis competitive with other reco. algorithms 
for given LEE signal model Phys. Rev. Lett. 128, 241801 

Phys. Rev. D 105, 112003

[PhysRevD.103.052002]

[JINST 16, P02017 (2021)]

https://link.aps.org/doi/10.1103/PhysRevLett.128.241801
https://link.aps.org/doi/10.1103/PhysRevD.105.112003
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.052002
https://iopscience.iop.org/article/10.1088/1748-0221/16/02/P02017


Clustering+Classification: Sparse Mask-RCNN
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2022 JINST 17 P09015

A key task is clustering hits (2D or 3D) into individual particles or into meaningful 
groups of particles

For detectors near the surface, neutrino interactions are a very small fraction of the 
cosmic background that passes through the detector

A modified version of the 
Detectron network trained to 
locate cosmic clusters and 
neutrino interactions.

Changed several components 
of this network to use sparse 
submanifold convolutions

Detectron output

Sparse Mask-RCNN outputs bounding box, 
mask, and class score

https://iopscience.iop.org/article/10.1088/1748-0221/17/09/P09015


Sparse Mask-RCNN for addressing backgrounds
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2022 JINST 17 P09015

Output from network can be used in minimal selection scheme to 
augment baseline cosmic taggers

Note that baseline tagger already good, but incorporates timing 
information from optical sensors to use (non-)coincidence between 
clusters and the beam

Reasons to believe 
Mask-RCNN and similar 
object detection methods 
will have trouble with 
particles within interactions

https://iopscience.iop.org/article/10.1088/1748-0221/17/09/P09015


Object Detection Methods for Individual Particles
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Issues derive from mismatch between bounding box and trajectories
● Two distinct objects can have essentially the same bounding box
● Objects often overlap
● These type of top-down detection methods often have trouble with small objects
● Potentially solvable with rotatable boxes …



SPICE
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SPICE Output
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Network learns to push spacepoints from same particle into ball and 
provides a centroid and radius to cluster the ball

Input w/ truth labels 
(only for visualization, not 
provided to net of course)

Output of Net: re-embedded 
points and regions to include 
in clusters



Shower Clustering
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One challenge to shower clustering is that at the lower (<~1 GeV 
neutrino energies) of DUNE or for experiments like MicroBooNE 
showers are actually disconnected

One strategy is to use SPICE to find contiguous shower 
sub-clusters and then piece together entire shower

Slide credit: K. Terao



Interaction Clustering
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Truth

Edges with score > 0.5

Output of net is also primary label 
for subfragments representing the 
start of the shower

Predicted clusters

See F. Drielsma’s talk on Graph Neural 
Networks Applications I (IF) for more!



Interaction Clustering
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Can extend this to clustering interactions

Addresses a big challenge in 
DUNE: high multiplicity of neutrino 
interactions in the near detector!

Performance remains high, even with 
higher multiplicities of interactions



End-to-End 3D Voxel-based DL Chain
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2D Particle Classification
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MicroBooNE data 
Preliminary

Going back to raw 2D images – potentially still useful in conjunction with reconstruction in 3D

Here shower object missing trunk because of detector issues: 
In two planes beginning of shower obscured for different reasons

Gap between vertex and shower usually 
indicates the shower is a photon



2D Particle Classification
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U-plane missing because of effect 
involving long ionization clouds 
moving past induction wire 

V-plane obscured due to 
unresponsive wires

Y-plane clearly shows ionization 
between shower and vertex
→ suggests shower is from electron



2D Particle Classification
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Provide “Prong CNN” both a 
masked “prong image” containing 
only those pixels consistent with 3D 
cluster

AND

“Context” image with crop around 
interaction  

(cosmic tagged clusters are 
masked in both)

Allow network to recognize and 
estimate upstream clustering errors

*Nova does something similar



2D Particle Classification
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*Output of network used in next-generation MicroBooNE analysis - that combines larmatch outputs + 3D 
clustering: early results suggest its competitive with current state-of-art analysis for nue-inclusive selection

Performance Metrics



2D Particle Classification
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Doing image manipulations to study use of context

Using such physics is good 
- but must be careful with 
understanding biases 
coming from neutrino 
interaction generator

Currently exploring
Remove second photon, 
prong photon score 
drops

Prong under consideration 
seems attached to vertex, 
but gap potentially obscured

However, there is a second 
shower in the context image



Challenges
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Lot’s of progress over less than a decade or so

SLAC SSI 2023 [08/09/2023]

Simulation/Modeling: can we translate physics to observables 
faster? Can we better use data-driven methods?

Inference: are we testing our models against data as best as we 
can while accounting properly for and mitigating our model 
uncertainties?

Operations: are we saving the right events? Is the experiment 
running optimally? Can we detect and make decisions faster?

… still lot’s of areas to tackle for which lot’s of ongoing effort

Fast ML on FPGAs to 
implement special rare 
process triggers

frai.2022.855184

https://doi.org/10.3389/frai.2022.855184


Challenges
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Simulation/Modeling: can we translate physics to observables 
faster? Can we better use data-driven methods?

Like in other frontiers, generating simulated data is a bottleneck of analyses

● Individual events can take upwards of ~5 mins/event+ for MicroBooNE TPC 
with simulated cosmics + neutrino interaction

● Data driven methods are used to get better estimate: in MicroBooNE and SBN 
experiments which are on surface, cosmic background data is collected and 
used in simulated data by adding neutrino interaction – but cannot save 
enough of these events due to processing and storage constraints



Simulations - Generative Models
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Score-based Generative Modeling shows promise for generating LArTPC-like images

Model generation as the reverse of a diffusion process bringing 
data images to noise



Simulations - Generative Models
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Which set, left or right, is training images – which are generated?

More details in next Wed. talk: “Generative Model Applications 3”



Simulations - Data Driven/Differentiable
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Differentiable (surrogate) simulations save time by allowing a way to possible reweight MC events 
rather than generating additional samples with variation in detector physics parameters

Also enables simulation-based inference for a number of exciting applictions

https://arxiv.org/abs/2211.01505

https://arxiv.org/abs/2211.01505


One more Challenge
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Accelerating Development: Are we providing enough tools to 
the community to enable new ideas and new contributors?



LArTPC Neutrino Interaction (Simulation) Dataset
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MicroBooNE has released some LArTPC simulations: cosmic data overlaid with simulated neutrino interaction



LArTPC Neutrino Interaction (Simulation) Dataset
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https://arxiv.org/abs/2006.01993

Another public dataset of 3D voxels along with simple 2D projections

https://osf.io/vruzp

https://arxiv.org/abs/2006.01993
https://osf.io/vruzp


Conclusions
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● ML techniques have already impacted the physics program of several 
neutrino experiments

● Many develops across experiments should provide further impact
● Developments have been somewhat focused on reconstruction
● But there are still other research challenges that ML might help to advance
● Cross pollination between experiments and frontiers will surely accelerate 

progress 



Backups
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LArTPC Primer
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Capturing Neutrino Interaction Images w/ LArTPCs
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MicroBooNE TPC



Capturing Neutrino Interaction Images w/ LArTPCs
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A neutrino 
(dashed grey) 
passes into the 
detector and 
interacts 
producing 
charged particles 
(solid yellow)



Capturing Neutrino Interaction Images w/ LArTPCs
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Charged particles produce 
ionization electrons: tell us 
path of particle

Also produces light: tells 
us time of the event



Capturing Neutrino Interaction Images w/ LArTPCs
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Ionization electrons 
drift towards 
wireplanes



Capturing Neutrino Interaction Images w/ LArTPCs
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Capturing Neutrino Interaction Images w/ LArTPCs
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Recording wire 
signals over time, 
detector produces 
image-like data



Capturing Neutrino Interaction Images w/ LArTPCs
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Capture 3 projection 
images with wire planes

Can solver inverse 
problem to recover 3D 
energy deposits

Ionization signals on wires 
coincident in time provide 
info for (Y,Z) position

X position given by time 
delay from light signal



Capturing Neutrino Interaction Images w/ LArTPCs
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tim
e

wire number

Plane 1 Plane 2 Plane 3

Example of data event in MicroBooNE. View of same event for each projection.

Color scale indicates amount of ionization electrons seen on wire at given time



Capturing Neutrino Interaction Images w/ LArTPCs
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Flavor determined from finding partner lepton (muon,electron) produced in interaction

Neutrino energy inferred from momenta of resulting particles



Neutrino Oscillation Analysis
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Flux model       -nucleus 
interaction model

Detector Sim

Reconstruction

Calculate 
observables

(Truth) final-state particles

(reco) final-state particles

Detector Outputs
Ionization

Optical

Observables

SLAC SSI 2023 [08/09/2023]



Neutrino Oscillations
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Neutrino Oscillation: 2-flavor example
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Neutrino Oscillation: 2-flavor example
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Neutrino Oscillation: 2-flavor example
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Key signature is 
oscillatory prob function 
of L/E

SLAC SSI 2023 [08/09/2023]



Neutrino Oscillation: 2-flavor example
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Key signature is 
oscillatory prob function 
of L/E

SLAC SSI 2023 [08/09/2023]



Neutrino nucleon Interactions
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Never scattering on a free quark.

Dominant interactions at        at  
(typical flavor and energy for accelerator      ) 

SLAC SSI 2023 [08/09/2023]



Neutrino Oscillations



Neutrino Oscillations



Neutrino Oscillations



Neutrino Oscillations



Cherenkov
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Other experiments analyze the pattern of Cherenkov Radiation to infer particle 
momenta and type.

Spatial arrange of optical sensors not grid-like

SLAC SSI 2023 [08/09/2023]

Example: Super-Kamiokande, T2K, Hyper-K Example: IceCube

EM showers
(fuzzy ring)

Muons
(sharp ring) Muon 

(from           )

Electron or Tau 
(from            or             )

Observing atmospheric + 
astrophysical neutrinos


