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About me
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• BS	and	MS	in	Computer	Science	(Madrid,	Spain).

• PhD	at	CERN	(Geneva,	Switzerland).
• Deep	learning	for	neutrino	event	reconstruction	
(DUNE	and	T2K	experiments).

• Currently:	senior	researcher	at	ETH	Zurich	(Switzerland).
• Leading	the	deep-learning	efforts	at	the	near	detector	
of	the	T2K	neutrino	experiment	in	Japan.

• Expertise	in	deep-learning	projects:	developing	CNNs,	GNNs,	RNNs,	
Transformers…	applied	to	various	domains:	neutrinos,	medical	
diagnosis,	and	cryptocurrencies.



1. Introduction	to	computer	vision.
2. Convolutional	neural	networks	(CNNs).
3. Beyond	CNNs:	exploring	other	current	methods.
4. Generative	models.
5. Challenges	and	future	directions.
6. Conclusion.

Overview
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Computer vision
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• Study	of	visual	data.

• Massive	amount	of	visual	data	produced	every	day.

• Origin	in	the	late	50s.
• Started	with	edge	detection,	line	labeling…	
• Relied	on	“hand-engineering.”
• Some	key	breakthroughs:	Hough	transform	[Duda,	R.O.	&	Hart,	P.E.,	
1972],	Convolutional	neural	networks	[LeCun,	Y.	et	al.,	1989],	Viola-
Jones	object	detection	[Viola,	P.	and	Jones,	M.	(2001)].

• Deep	learning	has	been	the	dominant	approach	in	computer	vision	
research	for	the	past	decade.

• Applications	in	many	areas:	automotive,	healthcare,	robotics,	media,	
agriculture,	security,	physics…	
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https://doi.org/10.1145/361237.361242
https://doi.org/10.1145/361237.361242
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https://doi.org/10.1109/CVPR.2001.990517


Digital images
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• A	computer	“sees”	a	grid	of	numbers.
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[Source:	Openframeworks]

• Grayscale images:	
• Pixel	values	from	0	(black)	
to	255	(white).

• RGB images:
• Each	color represents	a	
“channel”.

https://openframeworks.cc/ofBook/chapters/image_processing_computer_vision.html


Deep learning in computer vision
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• Deep	learning	(DL)	refers	to	neural	networks	with	multiple	layers	(deep	neural	
networks)	aimed	to	solve	complex	problems	(see	Monday	and	Tuesday	lectures).
• Although	neural	networks	have	been	around	for	decades,	it	was	not	until	recently	that	

they	became	feasible	to	run	on	large	datasets	using	available	hardware.

• The	DL	revolution	began	in	
2012,	when	a	convolutional	
neural	network	achieved	a	
milestone	in	image	classification	
by	significantly	reducing	the	
classification	error	of	a	dataset	
with	10,000	categories	and	10	
million	images	[Krizhevsky	A.	et	
al.,	2012].
• Classical	machine	learning	

techniques,	have	become	less	
relevant	due	to	the	impressive	
performance	of	deep	neural	
nets [O'Mahony	et	al.,	2019].
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http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1145/3065386
https://arxiv.org/pdf/1910.13796.pdf


Why not MLPs?
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• Fully-connected	neural	networks	(FCNNs),	also	known	as	dense	neural	networks	or	multi-
layer	perceptrons (MLPs),	are	a	type	of	artificial	neural	network	where	each	neuron	in	one	
layer	is	connected	to	every	neuron	in	the	next	layer.	
• MLPs	have	been	used	in	the	early	days	of	computer	vision	research.
• However,	they	are	not	commonly	used	for	modern	computer	vision	tasks.

• MLPs	require	a	fixed-size	one-dimensional	
input,	meaning	grids	of	pixels	need	to	be	
flattened	before	being	fed	to	the	network,	
resulting	in	an	extremely	large	number	of	
parameters	.
• In	the	example,	the	input	(flattened)	has	

3,072	values.	If	the	first	layer	has	1,000	
neurons,	that’s	3,072,000	parameters	
(without	bias)	for	only	the	first	layer!	

• They	are	not	translation	invariant.
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Image recognition (intuition)
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• Humans	break	down	images	into	different	parts	before	assembling	the	information	back	
together.
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It	is	orange	with	black	stripes:	
it	is	a	tiger.	

It	is	gray	with	a	long	trunk:	it	is	
an	elephant.	

It	is	gray	with	a	long	trunk:	it					
is	an	elephant.	



Convolutional neural networks (CNNs) 
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• Convolutional	neural	networks,	or	CNNs,	are	a	type	of	neural	network	architecture	
specifically	designed	for	image	recognition	tasks	in	computer	vision.
• Convolution:	element-wise	multiplication	and	sum	of	the	overlapping	elements	

between	the	kernel	and	the	input.
• CNNs	use	a	series	of	convolutional	layers	to	extract	hierarchical	features	from	images.	
• CNNs	have	achieved	state-of-the-art	performance	in various	computer	vision	tasks,	

including	object	detection,	image	segmentation,	and	facial	recognition.
• They	are	translation	invariant!

input learned	
kernel output	

(feature	map)
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• Convolutional	layers,	apart	from	extracting	features,	also	tend	to	downsample	the	height	
and	width of	the	input	image/feature	map	while	they	increase	the	number	of	channels	
(after	concatenating	multiple	output	feature	maps).

• Pooling	layers,	which	do	not	have	learnable	weights,	are	used	to	apply	an	even	stronger	
downsampling to	their	input.

[Source:	Adatis]

Convolutional neural networks (CNNs) 
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https://openframeworks.cc/ofBook/chapters/image_processing_computer_vision.html


• Krizhevsky,	A.	et	al.,	2012.

• Winner	of	the	ImageNet	LSVRC-
2012	challenge.
• Accuracy	of	84.7%	compared	

with	a	73.8%	accuracy	of	the	
runner-up.

• ~62M	parameters.
• 5	convolutional	layers,	max	

pooling,	3	fully-connected	
layers.

• ReLU as	an	activation	
function (sigmoid	and	tanh	
were	the	most	common	
activation	functions	back	then	
for	the	hidden	units).

• Dropout of	0.5	as	
regularization.

AlexNet (2012)

[Source:	oreilly.com]
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https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://www.oreilly.com/library/view/deep-learning-for/9781788295628/1ca58a07-6a2a-44ea-9b14-55b07ffebe8f.xhtml


• Szegedy,	C.	et	al.,	2014.	Also	known	as	Inception	v1.

• Winner	of	the	ImageNet	LSVRC-2014	challenge.
• Accuracy	of	93.3%	in	classification	tasks.

• ~6.4M	parameters.
• Inception	module:	1x1	conv,	3x3	conv,	5x5	conv,	max	pooling	(outputs	are	concatenated).
• The	network	“decides”	the	best	kernel	size	in	in	each	module!

• First	CNN	used	in	a	neutrino	experiment!	(NOvA,	see	L.	Whitehead	lecture	later!)

GoogLeNet (2014)

[Source:	Szegedy,	C.	et	al.,	2014]
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https://arxiv.org/abs/1409.4842
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• He,	K.	et	al.,	2015.	

• Winner	of	the	ImageNet	LSVRC-2015	challenge.
• Accuracy	of	95.51%	in	classification	tasks.
• Outperforming	humans!
• Several	versions	depending	on	the	number	of	

convolutional	layers:	ResNet-18,	ResNet-34,	
ResNet-50,	ResNet-152.

• ~60.3M	parameters	(ResNet-152).

• Back	then,	making	a	CNN	deeper	usually	decreased	
its	classification	accuracy	(vanishing	gradients).

ResNet (2015)

[Source:	He,	K.	et	al.,	2015]
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• The	“residual	blocks”	allow	the	network	to	apply	the	identify	function	(f(x)	=	x)	when	
needed	(zeroing	out	the	weights	of	the	intermediate	layers,	avoiding	vanishing	gradients).

• Widely	used	in	particle	physics	experiments:	DUNE,	CMS,	MicroBooNE… (again,	see	L.	
Whitehead	lecture	later!).
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• Image	classification	– identifying	the	class	an	object	belongs	to	– is	a	core	task	in	computer	
vision	and	is	the	primary	goal	of	the	architectures	shown	so	far.

• However,	variations	of	the	presented	CNN	architectures	can	approach	different	kinds	of	
problems,	such	as	face	recognition	or	object	detection.

• Current	architectures	tend	to	be	formed	from	building	blocks	of	successful	models	(e.g.,	
inception	block	from	GoogleNet,	skip	connections	from	ResNets).

• Semantic	segmentation	tries	to	identify	objects	at	pixel	level	belonging	to	the	same	class.
• It	is	key	for	pattern	recognition	in	fundamental	physics.

Dr. Saúl Alonso-Monsalve

Computer vision tasks
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[Source:	F.	Drielsma	et	al.	2021]

https://arxiv.org/abs/2102.01033


• A	successful	neural	network	for	
semantic	segmentation.

• “U”	shape	(symmetric):
• Encoder:	learns	to	extract	

relevant	information	from	the	
image	by	applying	convolutions.

• Decoder:	learns	to	recover	the	
location of	the	target	
information	by	upsampling	
(usually	through	transposed	
convolutions).

• Skip	connections	between	
encoder	and	decoder	layers	to	
improve	the	output	locations.

• The	output	is	a	high-resolution	image	
rather	than	a	single	value.

• Applications	in	autonomous	driving,	
medical	diagnosis,	particle	physics,	
etc.

U-Net

[Source:	Ronneberger,	O.	et	al.,	2015]
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http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
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Handling sparse data
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• In	particle	physics	and	astrophysics,	data	is	often	sparse due	to	
the	nature	of	the	objects	being	studied	or	the	particles	
detected.	

• This	poses	a	challenge	for	computer	vision,	as	standard	CNNs	
are	designed	to	work	with	dense	data.	To	address	this,	
researchers	are	developing	new	algorithms	and	techniques	
specifically	tailored	to	sparse	data.	
• For	example,	one	approach	is	to	use	Submanifold	Sparse	

Convolutional	Networks	(SSCN),	where	the	convolution	operation	
is	performed	only	on	the	non-zero	elements	of	the	sparse	data,	
resulting	in	an	efficient	and	accurate	representation	of	the	data.

[Source: britannica.com]

“Dense” image

• All pixels 
might be 
helpful for the 
classification.

• Ideal for 
standard 
CNNs.

“Sparse” images

• Most pixels are 
background.

• A standard CNN 
would perform 
loads of useless 
computations.

Dense 
convolution

Sparse 
convolution
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Graph neural networks (GNNs)
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• Graph	Neural	Networks (GNNs)	are	a	type	of	deep	learning	model	that	can	learn	and	process	
information	from	the	complex	structure	of	graphs,	which	makes	them	suitable	for	tasks	such	
as	node	classification,	link	prediction,	or	graph	classification.

• Compared	to	CNNs,	GNNs	can	handle	graph	data	with	variable	size	and	structure,	making	
them	more	suitable	for	relational	data	applications.

• See	J.	Duarte	and	F.	Drielsma’s lectures	tomorrow!

• Some	applications	of	GNNs	include	social	network	analysis,	recommendation	systems,	or	
bioinformatics.	GNNs	can	also	be	used	to	model	and	reason	about	physical	and	biological	
systems,	such	as	predicting	the	behavior	of	proteins	or	designing	new	molecules.

[Source: Github]

Dr. Saúl Alonso-Monsalve

https://openframeworks.cc/ofBook/chapters/image_processing_computer_vision.html


SSCNs and GNNs: 
applications in physics
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• In	physics,	SSCNs	and	GNNs	have	been	used	for	a	variety	of	applications	in	physics,	including:
• Anomaly	detection.
• Signal	vs.	background	discrimination.
• Galaxy	identification	and	classification.
• Neutrino	interaction	classification.
• Pileup	mitigation.	
• Event	energy	reconstruction.
• Track	vs.	shower	separation.
• Particle	tracking.
• Etc.

[Source:	K.	Terao,	2020]

[Source: S.	Inoue	
et	al.,	2022]
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https://indico.cern.ch/event/852553/contributions/4059542/attachments/2126481/3580253/2020-10-20-IML.pdf
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Transformers
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• Transformers	are	a	type	of	deep	neural	network	
architecture	that	has	revolutionized	natural	
language	processing	(NLP) and	other	sequence	
modeling	tasks.

• They	were	first	introduced	in	the	2017	paper	
"Attention	is	All	You	Need"	by	Vaswani	et	al.	
(arXiv:1706.03762)	and	have	since	become	one	
of	the	most	popular	deep	learning	models.

• Transformers	have	been	successfully	applied	to	
a	wide	range	of	NLP	tasks,	including	machine	
translation,	text	summarization,	sentiment	
analysis,	and	named	entity	recognition.
– ChatGPT is	a	Transformer.
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Transformers: self-attention
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I	am	a	student
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$ )A							=NxN
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• Self-attention is	a	mechanism	that	allows	each	token	in	the	input	
sequence	to	attend	to	all	other	tokens	and	learn	context-specific	
representations.

Input						
Embedding

0.4 0.1 0.2 0.3

0.3 0.6 0.0 0.1

0.2 0.1 0.5 0.2

0.4 0.1 0.1 0.4

I	

am
	
a
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I																	am																a													student

ANxN

• The	self-attention	mechanism	computes	a	
weighted	sum	of	the	input	embeddings,	
where	the	weights	are	learned	based	on	the	
similarity	between	the	tokens.

• Unlike	memory	mechanisms	in	RNNs,	self-
attention	enables	the	Transformer	model	to	
capture	long-range	dependencies	and	handle	
variable-length	input	sequences.

While self-attention is a key component of the
Transformer architecture, it is important to note that
Transformers use multi-head attention, which
allows the model to attend to information from
different representation subspaces.Dr. Saúl Alonso-Monsalve



Vision Transformer (ViT)
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[Source:	Dosovitskiy,	A.	et	al.,	2020]

• Dosovitskiy,	A.	et	al.,	2020.

• Although	Transformers were	initially	developed	
for	natural	language	processing	(NLP)	tasks,	they	
have	found	applications	in	a	wide	range	of	
domains	beyond	NLP	as	well.
• Transformers	have	been	applied	to	computer	

vision	too.	
• Vision	Transformers	(ViT)	is	one	such	

example	that	can	achieve	state-of-the-art	
results on	several	benchmark	datasets.

• The	input	sequence	consists	of	squared	
“patches”	of	the	image.

• In	physics,	Transformers	have	been	used	for	a	
variety	of	applications,	including:
• Particle	decay	prediction.
• Particle	track	fitting.
• Vertex	finding.
• Jet	identification.
• Etc.
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Choosing the right architecture
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• When	choosing	a	neural	network	architecture,	consider	the	following	factors:
§ Data	type	and	task	complexity:	different	architectures	are	designed	to	handle	different	

types	of	data	and	tasks.	For	example,	SSCNs	are	best	for	sparse	data	classification,	while	
U-Nets	are	best	for	semantic	segmentation.

§ Amount	of	training	data:	some	architectures	require	large	amounts	of	data	to	train	
effectively,	while	others	can	achieve	good	results	with	smaller	amounts	of	data.

§ Network	capacity	and	computing	resources:	having	more	model	parameters	can	
potentially	improve	a	model's	performance,	allowing	the	model	to	learn	more	complex	
representations	of	the	data.		However:
§ Larger	models	require	more	computational	resources	to	train	and	inference,	which	can	be	a	

practical	limitation	in	some	applications.
§ As	the	number	of	parameters	increases,	so	does	the	risk	of	overfitting	the	training	data,	which	

can	lead	to	poor	performance	on	new,	unseen	data.
§ Optimisation	algorithms	can	also	struggle	with	larger	models	due	to	increased	computation	

time	and	the	possibility	of	getting	stuck	in	local	minima.

• Overall,	the	best	architecture	for	a	neural	network	depends	on	various	factors	
and	requires	experimentation	and	iteration	to	find	the	optimal	solution.
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Generative models
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• Generative	models	can	create	new	data	samples	that	resemble	the	input	data	distribution.
• See	G.	Louppe,	F.	Lanusse,	D.	Shih,	and	T.	Wongjirad’s lectures	next	week!

• Two	main	types	of	generative	models	are	Generative	Adversarial	Networks	(GANs) and	
Variational	Autoencoders	(VAEs).
§ GANs	consist	of	a	generator	and	discriminator	networks	that	are	trained	together	to	

generate	realistic	samples.
§ VAEs	encode	input	data	into	a	latent	space	and	generate	new	samples	by	sampling	

from	this	latent	space	and	decoding the	samples	back	into	the	original	input	space.

[Source]

[Source]

GAN	
structure
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https://condor.depaul.edu/ntomuro/courses/578/notes/Catch%20Me%20if%20you%20GAN%20Rev04.pdf
https://neurohive.io/en/state-of-the-art/faster-learning-and-better-image-quality-with-evolving-generative-adversarial-networks/


Generative models
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• Particle	Flows	and	Stable	Diffusion	are	two	newer	types	of	
generative	models	that	have	shown	promising	results.
§ Particle	Flows	transform	an	initial	distribution	of	particles	to	a	

target	distribution	through	a	series	of	continuous	
transformations.

§ Stable	Diffusion	uses a	multi-step	diffusion	process	with	
controlled	noise	levels,	allowing	the	algorithm	to	produce	
high-quality	and	diverse	images.

• Generative	models	have	applications	in	various	areas,	such	as	data	
augmentation, super-resolution,	or style	transfer.

• In	particle	physics,	generative	models	can	be	used	to	simulate	
particle	interactions	and	generate	new	data	samples	for	analysis.
• Generative	models	are,	in	general,	much	faster	than	

Montecarlo simulations.

• In	astrophysics,	generative	models	can	be	used	to	generate	
simulations	of	the	universe	and	the	distribution	of	dark	matter.

[Source:	Example	of	
Stable	Diffusion]
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https://www.photoroom.com/tech/stable-diffusion-25-percent-faster-and-save-seconds
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Credit:	https://stablediffusionweb.com

Examples of Stable Diffusion
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https://stablediffusionweb.com/
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Examples of Stable Diffusion

Credit:	https://stablediffusionweb.com
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https://stablediffusionweb.com/
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Automated physics analyses
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• Deep	learning	and	computer	vision can	be	used	to	automate	certain	aspects	of	physics	analyses,	such	as	
data	preprocessing,	event	selection,	reconstruction,	etc.

• This	saves	significant	time	and	resources and	can	also	help	ensure	that	analyses	are	reproducible	and	
consistent.	
• For	example,	computer	vision	can	automatically	detect	and	remove	background	events	in	particle	

physics	experiments	or	identify	and	classify	different	types	of	galaxies	in	astrophysics.
• It	can	also	help	reduce	human	bias	in	the	analysis	process.

• There	are	many	remarkable	advances	in	this	regard.
• Despite	promising	advances	in	this	area,	integrating	deep-learning-based	computer-vision	techniques	

into	the	analysis	flow	of	physics	experiments	can	be	challenging	due	to	technical,	logistical,	and	
sometimes	skeptical	barriers.

“Scalable,	End-to-End,	
Deep-Learning-Based	Data	
Reconstruction	Chain	for	
Particle	Imaging	Detectors
”	- F.	Drielsma et	al.	2021

Dr. Saúl Alonso-Monsalve

https://arxiv.org/abs/2102.01033


Robustness against systematic uncertainties 
and simulation mismodelings
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• In	particle	physics	and	astrophysics,	there	are	often	systematic	uncertainties	
related	to	the	measurements,	as	well	as	mismodelings in	the	simulations.	
§ These	uncertainties	can	arise	from	a	variety	of	sources	and	can	affect	the	accuracy	

and	precision of	the	measurements	and	simulations	in	these	fields.

• Deep	learning	models	can	be	biased	or	inaccurate	as	a	result.	
§ To	address	this,	researchers	are	developing	methods	to	make	machine	learning	

models	more	robust against	these	uncertainties	and	mismodelings.	

• One	approach	is	to	use	adversarial	training,	where	the	model	is	trained	to	be	
robust	against	adversarial	examples that	are	specifically	designed	to	trick	the	
model.
§ Another	approach	is	to	incorporate	physics-based	constraints	or	priors	into	the	

model	(e.g.,	penalty	terms	in	the	loss	function),	to	help	ensure	that	the	model	is	
consistent	with	known	physics.

§ Adversarial	trainings	can	also	be	used	with	detector	data	to	refine	the	ML	models	in	
an	unsupervised	way.
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Generative models to replace simulations
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• Generative	models	are	machine	learning	models	that	can	generate	new	data	that	
is	similar	to	the	training	data.	

• In	particle	physics	and	astrophysics,	generative	models	can	be	used	to	generate	
new	simulated	data,	which	can	be	used	to	supplement	or	eventually	replace	
existing	simulations.	
• This	can	save	significant	time	and	resources and	can	also	help	address	
uncertainties	and	mismodelings in	the	simulations.	

• Current	work	cannot	fully	replace	current	simulations	yet,	but	are	more	
suited	for	fast	prototyping.

• Despite	the	limitations,	generative	models	are	a	promising	area	of	research	in	
HEP,	and	have	the	potential	to	revolutionize	the	way	simulations	are	performed	
in	the	field.	
• Although	Stable	Diffusion	shows	promise	for	replacing	simulations	in	HEP	
experiments,	its	current	computational	cost	remains	challenging.
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Large models and infrastructure
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• Particle	physics	and	astrophysics	generate	vast	amounts	of	data,	and	machine	
learning	models	trained	on	this	data	can	be	very	large	and	complex.	
§ This	requires	significant	computational	resources	and	infrastructure	to	train	and	

deploy	these	models.	
§ Investing	in	large-scale	infrastructure	and	end-to-end	systems	for	machine	learning	in	

particle	physics	and	astrophysics	is	an	important	future	direction.	
• We	are	very	far	away	from	state-of-the-art	
applications:
§ A	typical	deep	learning	model	in	physics	usually	

has	never	more	than	a	few	million	parameters.
§ GPT-3.5	(the	model	behind	ChatGPT)	was	trained	

for	~12-18	months	on	a	supercomputer	with	
~10,000	GPUs	and	~285,000	CPU	cores	(~1	billion	
dollars	to	rent)	and	has	175	billion	parameters	
[Source].

• Beware	of	the	significant	environmental	impact	
caused	by	the	large	carbon	footprint	of	deep	
learning	models.
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Summary and conclusion
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• Computer	vision	is	an	essential	field	in	fundamental	physics	research.

• We	have	explored	the	state-of-the-art	of	deep	learning	for	computer	vision.
• This	includes	CNNs,	GNNs,	Transformers…
• Direct	application	in	fundamental	physics.

• Challenges	for	future	research	include	dealing	with	sparse	data,	addressing	
uncertainties,	and	creating	generative	models.

• Developing	large	models,	infrastructure,	and	real-time	models	is	also	crucial	for	
future	research.

• Overall,	computer	vision	has	opened	up	new	avenues	for	fundamental	physics	
research,	and	addressing	its	challenges	can	lead	to	a	deeper	understanding	of	the	
universe.
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• “Machine	learning	at	the	energy	and	intensity	frontiers	of	particle	
physics”,	A.	Radovic et	al.,	Nature	(2018):	
https://doi.org/10.1038/s41586-018-0361-2.

• “A	Living	Review	of	Machine	Learning	for	Particle	and	Nuclear	Physics”	
(2021):	https://iml-wg.github.io/HEPML-LivingReview/review/hepml-
review.pdf.

• “Physics-based	Deep	Learning	Book”,	N.	Thuerey et	al.	(2021):	
https://physicsbaseddeeplearning.org.

• Computer	vision	tool	for	anyone	to	use!	:	https://landing.ai.

Recommended links
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