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About Me

* Senior Research Associate at the University of Cambridge

- PhD from the University of Warwick working on T2K
- Post-doc on MINOS / MINOS+ at UCL
- Research Fellow at CERN working on DUNE / ProtoDUNE

e Convene the ProtoDUNE sim / reco / physics analysis group

* Most of my career has been spent working on event reconstruction software

- Including traditional techniques, neural networks, BDTs, etc

* Focused on Deep Learning since 2017
- CNNs, GANs, GNNSs... etc
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Outline

* CNNs for event classification
- The first CNNs in neutrino physics: NOvA and MicroBooNE

- DUNE neutrino event classification®

* CNNs for pixel classification
- Semantic segmentation in MicroBooNE, and ProtoDUNE-SP small-patch CNN*

* Black-box and bias concerns
- Oceclusion tests in DUNE, and the MINERVA DANN approach

* Transfer Learning”

* NB: These are examples from work that | have done
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Introduction

* The title of the talk contains the phrase computer vision

- In this talk | will be solely focussing on convolutional neural networks (CNNSs)

* CNNs have been leading algorithms for image-based challenges for many years

* | can't cover everything here!
- | give a few other references in the final slide of the talk

- Any omission certainly isn’t an indication of the quality of work
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Neutrino physics detectors

 Many neutrino physics detectors lend themselves to image recognition
- Lots of 2D readout systems naturally produce image-like data
- Scintillator tracking detectors usually have 2 x 2D images per event

- LArTPCs typically have 3 x 2D images per event

* |nteractions typically happen uniformly within the detector volume

 Complexity of interactions varies significantly over a fairly small range of energy

- See multiple track-like and shower-like components in each event
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CNNs for Event Classification




The First CNNs: NOVA

* NOVA s a long-baseline
neutrino oscillation experiment

- Far detector is made from bars

filled with liquid scintillator giving
2 X 2D readout

- Detects neutrinos from
Fermilab’s NuMI beam
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The First CNNs: NOVA

I I 1 1 1 I 1 1 1 I 1 I 1 I 1
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 The NOVA experiment was the first to use a CNN | e o
10 |~ — Beam v, background |

- Paper published in 2016!]

- A CNN was used for event classification
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[1] A. Aurisano, et al., A convolutional neural network neutrino event classifier, Journal of Instrumentation 11 (2016) 09, PO9001
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The First CNNs: MicroBooNE

* MicroBooNE was a short-baseline
neutrino detector

* |t was built to investigate the LSND and
MiniBooNE low energy excess of
electron-like events

e Liquid argon TPC with 3 x 2D readout

e (Collected neutrinos from Fermilab’s
Booster and NuMI beams

Run 3493 Event 27435, October 23rd, 2015
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The First CNNs: MicroBooNE

* MicroBooNE: first LArTPC experiment to use a CNN
- Study published in 201 711]

 Paper includes a number of use-cases,
I'll focus on one

MicroBooNE
Simulation + Data Overlay

- Used for particle and neutrino detection

0.35
and classification 5030
_ = o MicroBooNE
- Based on Faster R-CNN architecture g Simulation + Data Overlay
zco'20 B Neutrino
go.ls mm Cosmic
gO.IOV
Eo.os

0.0 0.2 0.4 0.6 0.8 1.0
Neutrino Classification Score

[1] MicroBooNE Collaboration, Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber, JINST 12 (2017) 03, P03011
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DUNE Neutrino Event Classifier

 As a concrete example, | will discuss the neutrino event classifier from the Deep
Underground Neutrino Experiment (DUNE)

* DUNE is a future long-baseline neutrino oscillation experiment

Sanford Underground
Research Facility

Fermilab

------
-—‘-—- ~~~~~
«
- = =
A

* Primary physics goal is to measure CP-violation in the neutrino sector
- In order to do that, we need to distinguish different types of neutrinos
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Introduction to DUNE

 The DUNE Far Detector will be made from four modules

- Each module will be a liquid argon time projection chamber (LArTPC)

- Three 2D projections of each interaction sharing one common coordinate

DUNE Simulation

Time

-
Wire Charge

* The events are naturally representable as images

- A CNN is an obvious choice of algorithm to extract information from the data

Figures reproduced from: DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys.Rev.D 102 (2020) 9, 092003.
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DUNE

* Need to identify CC v, and CC ve reject background events

 Thus, the DUNE CVNI".Zl (it is a CNN) aims to classify beam neutrino events as:
- CC vy, CC ve, CC vqi, and NC

- CC vy are rare and hard to classify, so | won’t discuss them further

DUNE Simulation

Time

CC ve

Wire

Charge

Time

DUNE Simulation

CC v,

wire

Charge

Time

DUNE Simulation
NC (looks like CC vy)

Time

- >
wire

Charge

DUNE Simulation
NC (looks like CC ve)

" >
wire

Charge

[1] DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys. Rev. D 102 9, 092003 (2020)

[2] S. Alonso Monsalve, Novel usage of deep learning and high-performance computing in long-baseline neutrino oscillation experiments, PhD Thesis, Universidad Carlos Ill Madrid (2021)

Dr Leigh Whitehead - 51st SLAC Summer Institute (SSI 2023) 13




DUNE CVN

o Architecture based on SE-ResNet-3411.21 | ver s [—(5ifitei3
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* Trained on over 3 million events e e T

Figure reproduced from [3] output

e Other particle counting outputs will be

[1] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, 1512.03385; K. He, X. Zhang, S. Ren, and J. Sun, Identity Mappings in Deep Residual Networks, 1603.05027
[2] J. Hu, L. Shen, and G. Sun, Squeeze-and-Excitation Networks, 1709.01507
[3] DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys. Rev. D 102 9, 092003 (2020)
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http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1709.01507
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* See very good signal background separation
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Arrows show events selected for the CC ve

appearance sample

Figures reproduced from: DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys. Rev. D 102 9, 092003 (2020)
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DUNE CC v, selection

* See very good signal background separation
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2 o |
C c
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Arrows show events selected for the CC v,
disappearance sample

Figures reproduced from: DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys. Rev. D 102 9, 092003 (2020)
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DUNE selection efficiencies

* We obtain highly efficiency analyses from the CVN event selection

Selection Efficiency
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Figures reproduced from: DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys. Rev. D 102 9, 092003 (2020)
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DUNE CVN - Particle counting

* We tested some of the particle counting outputs

- Proof of principle of using the CVN for exclusive final state selections

500 400 -
" " . I DUNE Simulation . DUNE Simulation
® I\/I u Itl p Iy tog eth e r d Iffe re nt SCO reS . i —Signal CC v, 1 proton interactions 350 - —Signal NC 1 % interactions
400 | —AIll backgrounds 300 [ — All backgrounds
1 t 0o '
5 5
S S 200
- NC, Op, O£, 17170 4 N
) pa ) - 200 [ “ 150 F
100 |-
100 [~ [
50 =
: ' [ L — - L — r—\_,_'_r
0 1 _I_i 1 l=:_ 1 1 1 I | | J 0 ~ 1 1 1 I I_‘_:'=|_I_i ; 1 1 1 : 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
CVN v, 1 proton score CVN NC 1 =° score

* Clearly these would need to be strongly validated before use on data

- Much more likely to be biased by the choice of event generator

Figures reproduced from: DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys. Rev. D 102 9, 092003 (2020)

Dr Leigh Whitehead - 51st SLAC Summer Institute (SSI 2023) 18




CNNs for Pixel Classification




Pixel classification

e Semantic Segmentation is the standard method used for pixel classification
- It can also be used for instance segmentation

- Example from MicroBooNEI'l (uses a sparse CNN), U-Net architecture

 Small-patch classification
- ProtoDUNE small-patch networkl<l

[1] P. Abratenko et al., Semantic segmentation with a sparse convolutional neural network for event reconstruction in MicroBooNE, Phys. Rev. D 103, 052012 (2021)
[2] A. Abed Abud, et al., Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora. Eur. Phys. J. C 83, 618 (2023)
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MicroBooNE semantic segmentation

* Aim: to classify hits (and hence particles) as one of five classes:

- Minimum ionising particle, heavily ionising particle,
shower, delta-ray or Michel electron

* Architecture: Sparse U-Res-Net

MicroBooNE Simulation

HIP

-0.8

Predicted
MIP

Delta Shower

_|

10 cm
MicroBooNE Simulation

0.84

Michel

HIP MIP Shower Delta Michel
True

Figures reproduced from P. Abratenko et al., Semantic segmentation with a sparse convolutional neural network for event reconstruction in MicroBooNE, Phys. Rev. D 103, 052012 (2021)

Dr Leigh Whitehead - 51st SLAC Summer Institute (SSI 2023) 21




MicroBooNE semantic segmentation

Input

e Benchmarked on
simulation

80
60
40

20
L

MitroBooNE Simulation

e Some nice examples from data too

Input Classification

—T71100 -
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Run 5191

Subrun 46 Subrun 46 .- MIP
Event 2341~ p Event 2341« .~ i
V-plane- _ 50 - Shower

10 cm
‘MicroBooNE Data MBOQ@

Figures reproduced from P. Abratenko et al., Semantic segmentation with a sparse convolutional neural network for event reconstruction in MicroBooNE, Phys. Rev. D 103, 052012 (2021)
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ProtoDUNE-SP

 ProtoDUNE-SP was a large scale prototype for the DUNE FD

e |t was located in a test-beam at CERN

- It didn't collect neutrinos, but | include it here as a neutrino detector prototype

e Collected data from the test beam:

5000 = ;&2
- €7, “+v e, P, K* 4750 %
- Particles in the energy range 1 -7 GeV/c 4500 é
= 4250 ?é
* Also exposed to a high rate of cosmic rays 4000 g
3750 1% g
35003 100 200 300 400

Wire Number

Figure reproduced from B. Abi, et al., First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform, JINST 15 12, P12004, (2020)
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ProtoDUNE hit-tagging CNN

* Aim: to classify hits as either track-like or shower-like

- Also, separately, if they are Michel-electron-like

e Architecture:

- Very simple CNN with a single convolutional layer

- Operates on small 48 x 48 patches of the events

* Very low memory usage and fast for CPU inference

- Developed as an alternative to semantic segmentation
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Figure reproduced from A. Abed Abud, et al., Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network, Eur.Phys.J.C 82 10, 903, (2022)
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ProtoDUNE hit-tagging CNN

* |t was tested at the hit-level and particle-level

Hits per Cosmic Particle
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Figures reproduced from A. Abed Abud, et al., Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network, Eur.Phys.J.C 82 10, 903, (2022)
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Black Boxes and
Potential Biases




Occlusion tests

* One way to gain an understanding of what a CNN is looking for is to perform
occlusion tests

- This involves removing a small patch of pixels to see how the classification changes
- Time consuming as we do it for each pixel in the image and rerun the inference

- Output is a map of the change in classification score for each pixel

giibiipnees DUNE CUN.  original cCN  (erence
® LOOk at DUNE CVN example[ﬂ collection plane Vl@ew_{:)_@ predi'c\tion predictions output: 7x7 patches
Viewo | = : . : 0.020
- Vllew' D'O'D_ 0.953 - 0.968 = -0.015 .l 8:8%8
. . . ; ; - 0.005
* Thiswork was inspired bya |~ |— ¢ 0000
""""""""""" O CCy, score: 0.953 0010
StUdy frOm NOVA[Z] small 7x7 pixel O CC v, score: 0.002 :8:853

N —
— patch is withheld () CC v, score: 0.041 —
from the network O NC score: 0.004

Figure reproduced from [1]

[1] S. Alonso Monsalve, Novel usage of deep learning and high-performance computing in long-baseline neutrino oscillation experiments, PhD Thesis, Universidad Carlos IIl Madrid (2021)
[2] B. L. Howard Jr, Toward a Precision Era of Neutrino Oscillation Physics: Liquid Argon Scintillation Detector Development for DUNE and Neutrino Oscillation Studies with NOvA, PhD Thesis, Indiana University
(2019)
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DUNE CVN - Occlusion tests

 Change in CC ve score for a true CC ve event occluding (5 x 9) pixel patches

- We expect that removing pixels around the vertex will lower the score

0.8

Increased
0.6 CC ve score

0.4
0.2

10.0

-0.2

time
’
By Y A U
.y e -\
) q? {.% .l.l‘. o .
s A7 ‘-.l N "-,{
time
H

-0.4

e Decreased

CC ve sScore

-0.8

wire wire

Figure reproduced from [1]

[1] S. Alonso Monsalve, Novel usage of deep learning and high-performance computing in long-baseline neutrino oscillation experiments, PhD Thesis, Universidad Carlos IIl Madrid (2021)
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DUNE CVN - Occlusion tests

 Change in CC ve score for a true CC ve event occluding (5 x 9) pixel patches

- We expect that removing pixels around the vertex will lower the score

0.8

Increased
0.6 CC ve score
0.4
40.2
0) i _—t - GJ
- B =a 0.0
fur g
Decreased
CC ve sScore

Max Change  0.0015  0.1003 | 0.0098 0.8884

Figure reproduced from [1]

[1] S. Alonso Monsalve, Novel usage of deep learning and high-performance computing in long-baseline neutrino oscillation experiments, PhD Thesis, Universidad Carlos IIl Madrid (2021)

Dr Leigh Whitehead - 51st SLAC Summer Institute (SSI 2023) 29




DUNE CVN - Occlusion tests

* Change in CC v, score for a true CC v, event occluding (5 x 5) pixel patches

- This is a bit of a tricky event to classify

Increased
045 CC vy score
0.30
* 4
0.15
v - )
E :’:%“' : E 1000
- N =
e —-0.15
-0.30
_0.45 Decreased
CC v, score
wire wire

Figure reproduced from [1]

[1] S. Alonso Monsalve, Novel usage of deep learning and high-performance computing in long-baseline neutrino oscillation experiments, PhD Thesis, Universidad Carlos IIl Madrid (2021)

Dr Leigh Whitehead - 51st SLAC Summer Institute (SSI 2023) 30




DUNE CVN - Occlusion tests

* Change in CC v, score for a true CC v, event occluding (5 x 5) pixel patches

- This is a bit of a tricky event to classify
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0.45 CC v, score

0.30

r 4
/- 0.15
& E -
S R i
2 ~0.15

Decreased
CC vy score

0.0011 | 0.1152 0.6886

Figure reproduced from [1]

[1] S. Alonso Monsalve, Novel usage of deep learning and high-performance computing in long-baseline neutrino oscillation experiments, PhD Thesis, Universidad Carlos IIl Madrid (2021)
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Potential biases

* One common concern on the use of deep learning is the choice of which MC
training sample to use

- Simulations are never perfect

- WIll it have biases when tested on real data given it is trained on MC?
 The MINERVA experiment performed a nice study to investigate thisl!!

* They have a CNN used for vertex finding

- It is trained with a domain adversarial neural network (DANN)[2]

- The DANN tries to distinguish between different simulation samples

[1] G.N. Perdue, et al., Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERVA experiment, JINST 13 P11020 (2018)
[2] Y. Ganin, et al., Domain-Adversarial Training of Neural Networks, Journal of Machine Learning Research 17 59 (2016)
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MINERVA vertex finding

* | don't have time to go into the details of DANNSs, but they look a bit like this:

e |n MINERVA'S use case:

oL,
90 ¢

- Blue: vertex location prediction 4 1B QE >
. \_/[_)\%J\ label pr(*(li("f()r (.:'{,,(-.: {)!,)
- Pink: "which MC sample is this?” %, 90 s, S domein glasifer G0

\ o,

- Green: feature extractor CNN

' :> [ :> :> Eclass label y
. J
h 4

J soanjeoy]

feature extr'}gtor Ge(:05) (9;[);:%’?( \
. . - ' ‘ e kY f‘> Q) domain label d
e The role of the domain classifier o) \[ é)Ld
IS to allow the CNN to only _forwardprop _backprop (and produced derivatives) 90,
learn generic features common to roure fom 4

the different domains

[1] G.N. Perdue, et al., Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERVA experiment, JINST 13 P11020 (2018)
[2] Y. Ganin, et al., Domain-Adversarial Training of Neural Networks, Journal of Machine Learning Research 17 59 (2016)
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MINERVA vertex finding

* The accuracy for different trainings is given below

e Blue: train and test CNN on the same sample 0.98F

0.96
e Black: train CNN on one sample but test on 0.94

another §o_gg
§ 0-9 '- Trair; out of dc;main witl;
e Green: train on one sample but test on another g o.8sjf in-domain DA partner |
Wlth the DANN 0.86 in-cfomain DANN ;.)artner half sample |-
084K | " Train out of domain |
* Red: as above but with more statistics 0:2; """ — T""‘ ——
0 5 10 15 20 25 30

Epoch

Figure from [1]

[1] G.N. Perdue, et al., Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERVA experiment, JINST 13 P11020 (2018)
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Transfer Learning




What is transfer learning?

* Transfer learning makes use of previously trained networks
- Allows you to fine tune a pre-trained network for your task
- Can be useful if you don’'t have much data

- The idea dates back to the early days of perceptronsl’]

" " Eur. Phys.J.C  (2022) 82:1099 THE E M)
* | will discuss a recer)t study Moty - &
we performed on using transfer Regular Arice - Experimental Physics
learning in neutrino event

Application of transfer learning to neutrino interaction

classification classification

Andrew Chappell>*®, Leigh H. Whitehead "

I Department of Physics, University of Cambridge, Cambridge CB3 OHE, UK
2 Department of Physics, University of Warwick, Coventry CV4 7AL, UK

https://link.springer.com/article/10.1140/epjc/s10052-022-11066-6

[1] S. Bozinovski, A. Fulgosi, The influence of pattern similarity and transfer learning upon the training of a base perceptron b2. In: Proceedings of Symposium Informatica, Bled, Slovenia (1976) p. 3—1215.
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Transfer Learning in Physics

* | was only able to find once example of transfer learning in a related field when
we started this work

Simulated Real
* The AT-TPCIll was a nuclear physics e N ' .
experiment _ 53 L {9, : @ @

* Used transfer learning due to a
small simulation dataset Carbon

* Also used some hand-labelled data K
due to poor simulation quality Oher G

[1] M. P. Kuchera, et al., Machine Learning Methods for Track Classification in the AT-TPC, NIM A 940 (2019) 156-167, 1810.10350
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Transfer Learning in LArTPCs

e Can we use transfer learning to reduce the number of training examples?

- Simulations are time consuming and GPUs need a lot of power

 Conveniently, LArTPC detectors, such as DUNE, have three readout planes
- We get three images of a given interaction

- Photographic images have depth three (red, green and blue channels)

e Can we use a network trained on photographs for our event classification”?
- There are plenty of networks trained on photograph-based challenges

- Use these networks as a starting point and fine tune the weights
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TL: Event Sample

* GENIE neutrino events: / CC Ve NC
- CC vy, CC veand NC ewde S——

- 50,000 of each type CC vy

 Events passed through simple LArTPC simulation

- Outputs three images of each event

200—

100[—

- Three projections of the (y,z) plane

Drift Position (cm)
o
|

CC vy event with the three views ____—> .= = o
overlaid as RGB channels ool
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TL: Architecture and lraining

* \We chose to use the Pytorch implementation of ResNet18

- Small depth was chosen since this study involved training over 1000 networks

* The pre-trained version of ResNet18 was trained on ImageNet
- We had to change the final layer from 1000 to 3 classes: CC v, CC ve and NC

e Trained ensembles of 25 networks with;
- Either:

e Kaiming (He) randomly initialised weights <———— Standard initialisation for ResNets

 Weights from the pre-trained ImageNet network

- Training samples ranging from 1,000 to 100,000 events
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Results: TF vs random initialisation

e Compared the F1 score from the transfer-learned networks fine-tuned with 1k to
100k images against the Kaiming-initialised network with 50k and 100k events

* Transfer-learned network out-
performs the Kaiming-initialised
network with 100k training images

- For 7k training images and above

* Event fine-tuning just the final
layer works surprising well

F1 score =0.79

F1 Score

0.9 3
— F
| T Y
| L 3
- I =
-
0.85— 3
— £ Kaiming initialisation with 100k training images
i Kaiming initialisation with 50k training images
0.8
‘I_ Pre-trained, classifier-only with 100k training images
0.75—
: Transfer Learning - All Weights
B — Validation sample
0.7—
- ——— Test sample
065 B ] ] ] | ] ] ] | ] ] ] | ] ] ] | ] ] ] | ]
0 20 40 60 80 100

Number of training images (x1000)
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Results: TF vs random Initialisation

* Also looked at the accuracy per class

- We see improvements in each class individually

Accuracy

1

09— =, = = i - -
K) K 3 * : x
Y x z & E I X T ;
1 I I

0.8 EL 7 E ; I I I I
L f -

1§ I

0.7 3

0.6 [—

T Transfer Learning Kaiming Initialisation
i I —— CCv, —=— CC v,
B —— CC v, —=— CC v,

0.5 | —— NC v NC v
:

O 4 B ] ] ] | ] ] | ] ] ] | ] ] ] | ] ] ] | ]

0 20 40 60 80 100

Number of training images (x1000)
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Transfer Learning in LArTPCs

* We also looked for potential biases between classes and as a function of energy
- See reduced bias in both cases using transfer learning

- Plots show examples from training with 100k events

1.0 5 1.0 -
' 3
: !
- ‘ L 2
0.81 $ 0.8
o 4 PN
»
0.6 0.6
o o
e e
0 O
b b
0.4 0.4-
Kaiming Initialisation Transfer Learning
0.2- 0.2-
o CCuyy o CCy,
® CC ve @ CC ve
e NC e NC
0-%000 1500 2000 2500 3000 3500 4000 0-%000 1500 2000 2500 3000 3500 4000

Energy (MeV) Energy (MeV)
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Transfer Learning in LArTPCs

* Also looked at the effect of freezing different layer weights
- Layers 1 to 4 here correspond to the ResNet blocks

- As a minimum we have to train the classifier (dense layer)

- The difference between Layer 1 and All
Weights is the first convolutional layer

0.92
0.9

L

 No difference in performance is seen when
the first layer weights can be fine-tuned

0.88

0.86

Accuracy

e The ImageNet-trained first convolutional
layer extracts all the information needed
to classify our neutrino events 0.82

0.8

0.84

' More weights available for fine-tuning
o R S S S .l

Classifier Only + Layer 4 + Layer 3 + Layer 2 + Layer 1 All Weights
Trainable Weights

0.78
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Conclusions

 Use of CNNs in neutrino physics is now well-established

- Used for many use cases including event classification and semantic segmentation

e | think the coming years will show a focus on robustness
- There isn’t much physics gain in going from 95% to 96% efficiency

- There is a lot of impact understanding your analysis at the 10% level to the 5% level

* Transfer learning looks to be a promising approach in some cases
- (Good performance with low numbers of training examples

- Can help reduce computational burdens
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Conclusions

* One note of caution: CNNs aren’t always the right tool for the job!

- If you find yourself needing to make complex projections to format your data as an
image then using a CNN might not be the best approach

- Tomorrow you'll see other approaches for differently structured data
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Thank you... any questions?

Bonus Picture: A doe and her two fawns outside my window in the Stanford Guest House
at 6:30am. A perk of jet lag, perhaps?




Additional references

o Study of using a DANN to reduce bias in ICARUS event filtering: https://doi.org/
10.1103/PhysRevD.105.112009

e Some reviews:

- P. Calafiura, D. Rousseau, K. Terao, Artificial Intelligence for High Energy Physics,
World Scientific, 2022

- A. Radovic et al. Machine learning at the energy and intensity frontiers of particle
physics, Nature volume 560, pages 41-48 (2018)
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