

Computer Vision in Neutrino Physics

- Dr Leigh Whitehead
 - University of Cambridge
- 9th August 2023 51st SLAC Summer Institute (SSI 2023)

About Me

- Senior Research Associate at the University of Cambridge PhD from the University of Warwick working on T2K
- - Post-doc on MINOS / MINOS+ at UCL
 - Research Fellow at CERN working on DUNE / ProtoDUNE
- Convene the ProtoDUNE sim / reco / physics analysis group
- Most of my career has been spent working on event reconstruction software
 - Including traditional techniques, neural networks, BDTs, etc.
- Focused on Deep Learning since 2017
 - CNNs, GANs, GNNs... etc

Outline

- CNNs for event classification
 - The first CNNs in neutrino physics: NOvA and MicroBooNE
 - DUNE neutrino event classification*
- CNNs for pixel classification
- Black-box and bias concerns
 - Occlusion tests in DUNE, and the MINERvA DANN approach
- Transfer Learning*

Semantic segmentation in MicroBooNE, and ProtoDUNE-SP small-patch CNN*

NB: These are examples from work that I have done

Introduction

- The title of the talk contains the phrase computer vision
 - In this talk I will be solely focussing on convolutional neural networks (CNNs)
- CNNs have been leading algorithms for image-based challenges for many years
- I can't cover everything here!
 - I give a few other references in the final slide of the talk
 - Any omission certainly isn't an indication of the quality of work

Neutrino physics detectors

- Many neutrino physics detectors lend themselves to image recognition
 - Lots of 2D readout systems naturally produce image-like data
 - Scintillator tracking detectors usually have 2 x 2D images per event
 - LArTPCs typically have 3 x 2D images per event
- Interactions typically happen uniformly within the detector volume
- Complexity of interactions varies significantly over a fairly small range of energy
 - See multiple track-like and shower-like components in each event

CNNs for Event Classification

The First CNNs: NOvA

- NOvA is a long-baseline neutrino oscillation experiment
 - Far detector is made from bars filled with liquid scintillator giving 2 x 2D readout
 - Detects neutrinos from Fermilab's NuMI beam

<u> </u>		1000		2000		3(000		4000		5000	
- ¹ - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,												
- - -									en 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997			<u></u>
- 1. - 1. - 1.												
- - -				Alexandra Alexandra Alexandra		n saint sa Taong saint		\sim				- 1 N - 12
							12					
												X
-								S. 7				
- ¹ ⁽¹⁾								\times				
-												
-							a de la composición de la comp					
0		1000		2000		3()00		4000		$\leftarrow \frac{5000}{\text{south}}$	z (ci
FNAL E929	pits	live_1		·			hits	10^{3}		·····		
Aug 5, 2023 .727903424	1	0	100	200	300 4	00 5 t (00 µsec)	10	<u> </u>	10 ²		₩ ₩ ₩ ₩

The First CNNs: NOvA

- - Paper published in 2016^[1]
 - A CNN was used for event classification

 - their main CC v_e analysis

[1] A. Aurisano, et al., A convolutional neural network neutrino event classifier, Journal of Instrumentation 11 (2016) 09, P09001

The First CNNs: MicroBooNE

- MicroBooNE was a short-baseline neutrino detector
- It was built to investigate the LSND and MiniBooNE low energy excess of electron-like events
- Liquid argon TPC with 3 x 2D readout
- Collected neutrinos from Fermilab's **Booster and NuMI beams**

The First CNNs: MicroBooNE

- MicroBooNE: first LArTPC experiment to use a CNN
 - Study published in 2017^[1]
- Paper includes a number of use-cases, I'll focus on one
 - Used for particle and neutrino detection and classification
 - Based on Faster R-CNN architecture

[1] MicroBooNE Collaboration, Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber, JINST 12 (2017) 03, P03011

DUNE Neutrino Event Classifier

- As a concrete example, I will discuss the neutrino event classifier from the Deep Underground Neutrino Experiment (DUNE)
- DUNE is a future long-baseline neutrino oscillation experiment

 Primary physics goal is to measure CP-violation in the neutrino sector In order to do that, we need to distinguish different types of neutrinos

Introduction to DUNE

- The DUNE Far Detector will be made from four modules
 - Each module will be a liquid argon time projection chamber (LArTPC)
 - Three 2D projections of each interaction sharing one common coordinate

- The events are naturally representable as images
 - A CNN is an obvious choice of algorithm to extract information from the data

Figures reproduced from: DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys.Rev.D 102 (2020) 9, 092003.

DUNE

- Need to identify CC v_µ and CC v_e reject background events
- Thus, the DUNE CVN^[1,2] (it is a CNN) aims to classify beam neutrino events as:
 - CC v_{μ} , CC v_{e} , CC v_{τ} , and NC
 - CC v_T are rare and hard to classify, so I won't discuss them further

[1] DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys. Rev. D 102 9, 092003 (2020) [2] S. Alonso Monsalve, Novel usage of deep learning and high-performance computing in long-baseline neutrino oscillation experiments, PhD Thesis, Universidad Carlos III Madrid (2021)

DUNE CVN

- Architecture based on SE-ResNet-34^[1,2]
- Inputs processed separately for the first few blocks and then merged
- Main output is the flavour classifier The top one shown in the figure
- Other particle counting outputs will be further studied in the future
- Trained on over 3 million events

[1] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, 1512.03385; K. He, X. Zhang, S. Ren, and J. Sun, Identity Mappings in Deep Residual Networks, 1603.05027 [2] J. Hu, L. Shen, and G. Sun, Squeeze-and-Excitation Networks, 1709.01507

[3] DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys. Rev. D 102 9, 092003 (2020)

)	r	l	S
)	r	l	S
)	r	l	S

ι⊥	prous
1	pions
1	pions
al	pions

÷u	prons
ed	pions
ed	pions
ed	pions

DUNE CC ve selection

See very good signal background separation

Figures reproduced from: DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys. Rev. D 102 9, 092003 (2020)

Arrows show events selected for the CC $v_{\rm e}$ appearance sample

DUNE CC v_{μ} selection

See very good signal background separation

Neutrino mode

Figures reproduced from: DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys. Rev. D 102 9, 092003 (2020)

Antineutrino mode Events 10³ **DUNE Simulation** ----- CC ($\overline{\nu}_{\mu}$ + ν_{μ}) signal — CC ($\overline{\nu}_{\tau}$ + ν_{τ}) background ----- NC (\overline{v} + v) background **10**² 10 ൜഻഻൷൷൛൜ 1눝 ᠋᠋᠃᠃᠃᠃᠃᠃᠃᠃᠃᠃ **10**⁻¹ 0.2 8.0 0 0.4 0.6 CVN ν_{μ} Score

Arrows show events selected for the CC v_{μ} disappearance sample

DUNE selection efficiencies

We obtain highly efficiency analyses from the CVN event selection

Efficiency for selecting CC v_e interactions

Figures reproduced from: DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys. Rev. D 102 9, 092003 (2020)

Efficiency for selecting CC v_{μ} interactions

DUNE CVN - Particle counting

- We tested some of the particle counting outputs
 - Proof of principle of using the CVN for exclusive final state selections
- Multiply together different scores:
 - CC v_μ, 1p, 0π[±], 0π⁰
 - NC, 0p, 0π[±], 1π⁰

- Clearly these would need to be strongly validated before use on data
 - Much more likely to be biased by the choice of event generator

Figures reproduced from: DUNE Collaboration, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Phys. Rev. D 102 9, 092003 (2020)

CNNs for Pixel Classification

Pixel classification

- Semantic Segmentation is the standard method used for pixel classification
 - It can also be used for instance segmentation
 - Example from MicroBooNE^[1] (uses a sparse CNN), U-Net architecture
- Small-patch classification
 - ProtoDUNE small-patch network^[2]

[1] P. Abratenko et al., Semantic segmentation with a sparse convolutional neural network for event reconstruction in MicroBooNE, Phys. Rev. D 103, 052012 (2021) [2] A. Abed Abud, et al., Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora. Eur. Phys. J. C 83, 618 (2023)

MicroBooNE semantic segmentation

• Aim: to classify hits (and hence particles) as one of five classes:

- 0.8

- 0.6

0.4

· 0.2

- Minimum ionising particle, heavily ionising particle, shower, delta-ray or Michel electron
- Architecture: Sparse U-Res-Net

Figures reproduced from P. Abratenko et al., Semantic segmentation with a sparse convolutional neural network for event reconstruction in MicroBooNE, Phys. Rev. D 103, 052012 (2021)

Benchmarked on simulation

Some nice examples from data too

Input

Classification

Figures reproduced from P. Abratenko et al., Semantic segmentation with a sparse convolutional neural network for event reconstruction in MicroBooNE, Phys. Rev. D 103, 052012 (2021)

Input

Classification

ProtoDUNE-SP

- ProtoDUNE-SP was a large scale prototype for the DUNE FD
- It was located in a test-beam at CERN
 - It didn't collect neutrinos, but I include it here as a neutrino detector prototype
- Collected data from the test beam:
 - e⁺, μ⁺, π⁺, p, K⁺
 - Particles in the energy range 1 7 GeV/c
- Also exposed to a high rate of cosmic rays

Figure reproduced from B. Abi, et al., First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform, JINST 15 12, P12004, (2020)

ProtoDUNE hit-tagging CNN

- Aim: to classify hits as either track-like or shower-like
 - Also, separately, if they are Michel-electron-like
- Architecture:
 - Very simple CNN with a single convolutional layer
 - Operates on small 48 x 48 patches of the events
- Very low memory usage and fast for CPU inference
 Developed as an alternative to semantic segmentation

Figure reproduced from A. Abed Abud, et al., Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network, Eur. Phys. J.C 82 10, 903, (2022)

e or shower-like

ProtoDUNE hit-tagging CNN

(by averaging scores per particle)

Figures reproduced from A. Abed Abud, et al., Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network, Eur. Phys. J.C 82 10, 903, (2022)

Test-beam particle scores

Black Boxes and Potential Biases

Occlusion tests

- occlusion tests
 - This involves removing a small patch of pixels to see how the classification changes Time consuming as we do it for each pixel in the image and rerun the inference Output is a map of the change in classification score for each pixel
- Look at DUNE CVN example^[1]
- This work was inspired by a study from NOvA^[2]

One way to gain an understanding of what a CNN is looking for is to perform

[1] S. Alonso Monsalve, Novel usage of deep learning and high-performance computing in long-baseline neutrino oscillation experiments, PhD Thesis, Universidad Carlos III Madrid (2021) [2] B. L. Howard Jr, Toward a Precision Era of Neutrino Oscillation Physics: Liquid Argon Scintillation Detector Development for DUNE and Neutrino Oscillation Studies with NOvA, PhD Thesis, Indiana University

Dr Leigh Whitehead - 51st SLAC Summer Institute (SSI 2023)

(2019)

0.010 0.005 0.000 -0.005-0.010-0.015-0.020

- - We expect that removing pixels around the vertex will lower the score

Figure reproduced from [1]

[1] S. Alonso Monsalve, Novel usage of deep learning and high-performance computing in long-baseline neutrino oscillation experiments, PhD Thesis, Universidad Carlos III Madrid (2021)

• Change in CC v_e score for a true CC v_e event occluding (5 x 5) pixel patches

- - We expect that removing pixels around the vertex will lower the score

Figure reproduced from [1]

[1] S. Alonso Monsalve, Novel usage of deep learning and high-performance computing in long-baseline neutrino oscillation experiments, PhD Thesis, Universidad Carlos III Madrid (2021)

• Change in CC v_e score for a true CC v_e event occluding (5 x 5) pixel patches

- - This is a bit of a tricky event to classify

Figure reproduced from [1]

[1] S. Alonso Monsalve, Novel usage of deep learning and high-performance computing in long-baseline neutrino oscillation experiments, PhD Thesis, Universidad Carlos III Madrid (2021)

• Change in CC v_{μ} score for a true CC v_{μ} event occluding (5 x 5) pixel patches

- - This is a bit of a tricky event to classify

Figure reproduced from [1]

[1] S. Alonso Monsalve, Novel usage of deep learning and high-performance computing in long-baseline neutrino oscillation experiments, PhD Thesis, Universidad Carlos III Madrid (2021)

• Change in CC v_{μ} score for a true CC v_{μ} event occluding (5 x 5) pixel patches

Potential biases

- training sample to use
 - Simulations are never perfect
 - Will it have biases when tested on real data given it is trained on MC?
- The MINERvA experiment performed a nice study to investigate this^[1]
- They have a CNN used for vertex finding
 - It is trained with a domain adversarial neural network (DANN)^[2]
 - The DANN tries to distinguish between different simulation samples

• One common concern on the use of deep learning is the choice of which MC

[1] G.N. Perdue, et al., Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment, JINST 13 P11020 (2018) [2] Y. Ganin, et al., Domain-Adversarial Training of Neural Networks, Journal of Machine Learning Research 17 59 (2016)

MINERvA vertex finding

- In MINERvA's use case:
 - Green: feature extractor CNN
 - Blue: vertex location prediction
 - Pink: "which MC sample is this?"
- The role of the domain classifier is to allow the CNN to only learn generic features common to the different domains

• I don't have time to go into the details of DANNs, but they look a bit like this:

[1] G.N. Perdue, et al., Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment, JINST 13 P11020 (2018) [2] Y. Ganin, et al., Domain-Adversarial Training of Neural Networks, Journal of Machine Learning Research 17 59 (2016)

MINERvA vertex finding

- The accuracy for different trainings is given below
- Blue: train and test CNN on the same sample
- Black: train CNN on one sample but test on another
- Green: train on one sample but test on another with the DANN
- Red: as above but with more statistics

[1] G.N. Perdue, et al., Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment, JINST 13 P11020 (2018)

Transfer Learning

What is transfer learning?

- Transfer learning makes use of previously trained networks
 - Allows you to fine tune a pre-trained network for your task
 - Can be useful if you don't have much data
 - The idea dates back to the early days of perceptrons^[1]
- I will discuss a recent study we performed on using transfer learning in neutrino event classification

[1] S. Bozinovski, A. Fulgosi, The influence of pattern similarity and transfer learning upon the training of a base perceptron b2. In: Proceedings of Symposium Informatica, Bled, Slovenia (1976) p. 3–1215.

Eur. Phys. J. C (2022) 82:1099 https://doi.org/10.1140/epjc/s10052-022-11066-6

Regular Article - Experimental Physics

Application of transfer learning to neutrino interaction classification

Andrew Chappell^{2,a}, Leigh H. Whitehead^{1,b}

¹ Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK

² Department of Physics, University of Warwick, Coventry CV4 7AL, UK

https://link.springer.com/article/10.1140/epjc/s10052-022-11066-6

Dr Leigh Whitehead - 51st SLAC Summer Institute (SSI 2023)

THE EUROPEAN **PHYSICAL JOURNAL C**

36

Transfer Learning in Physics

- we started this work
- The AT-TPC^[1] was a nuclear physics experiment
- Used transfer learning due to a small simulation dataset
- Also used some hand-labelled data due to poor simulation quality

I was only able to find once example of transfer learning in a related field when

Transfer Learning in LArTPCs

- Can we use transfer learning to reduce the number of training examples?
 - Simulations are time consuming and GPUs need a lot of power
- Conveniently, LArTPC detectors, such as DUNE, have three readout planes - We get three images of a given interaction
- - Photographic images have depth three (red, green and blue channels)
- Can we use a network trained on photographs for our event classification?
 - There are plenty of networks trained on photograph-based challenges
 - Use these networks as a starting point and fine tune the weights

TL: Event Sample

- GENIE neutrino events:
 - CC v_{μ} , CC v_e and NC
 - 50,000 of each type
- Events passed through simple LArTPC simulation
 - Outputs three images of each event
 - Three projections of the (y,z) plane

 $CC v_{\mu}$ event with the three views overlaid as RGB channels

TL: Architecture and Training

- We chose to use the Pytorch implementation of ResNet18
 - Small depth was chosen since this study involved training over 1000 networks
- The pre-trained version of ResNet18 was trained on ImageNet
 - We had to change the final layer from 1000 to 3 classes: CC v_{μ} , CC v_{e} and NC
- Trained ensembles of 25 networks with:
 - Either:
 - Kaiming (He) randomly initialised weights
 Standard initialisation for ResNets
 - Weights from the pre-trained ImageNet network
 - Training samples ranging from 1,000 to 100,000 events

Results: TF vs random initialisation

- Transfer-learned network outperforms the Kaiming-initialised network with 100k training images
 - For 7k training images and above
- Event fine-tuning just the final layer works surprising well
 - F1 score = 0.79

Compared the F1 score from the transfer-learned networks fine-tuned with 1k to 100k images against the Kaiming-initialised network with 50k and 100k events

Results: TF vs random initialisation

- Also looked at the accuracy per class
 - We see improvements in each class individually

Transfer Learning in LArTPCs

- We also looked for potential biases between classes and as a function of energy
 - See reduced bias in both cases using transfer learning
 - Plots show examples from training with 100k events

Transfer Learning in LArTPCs

- Also looked at the effect of freezing different layer weights
 - Layers 1 to 4 here correspond to the ResNet blocks
 - As a minimum we have to train the classifier (dense layer)
 - The difference between Layer 1 and All Weights is the first convolutional layer
 - No difference in performance is seen when the first layer weights can be fine-tuned
 - The ImageNet-trained first convolutional layer extracts all the information needed to classify our neutrino events

Conclusions

- Use of CNNs in neutrino physics is now well-established
 - Used for many use cases including event classification and semantic segmentation
- I think the coming years will show a focus on robustness
 - There isn't much physics gain in going from 95% to 96% efficiency
 - There is a lot of impact understanding your analysis at the 10% level to the 5% level
- Transfer learning looks to be a promising approach in some cases
 - Good performance with low numbers of training examples
 - Can help reduce computational burdens

Conclusions

- One note of caution: CNNs aren't always the right tool for the job!
 - If you find yourself needing to make complex projections to format your data as an image then using a CNN might not be the best approach
 - Tomorrow you'll see other approaches for differently structured data

Bonus Picture: A doe and her two fawns outside my window in the Stanford Guest House at 6:30am. A perk of jet lag, perhaps?

Thank you... any questions?

Additional references

- 10.1103/PhysRevD.105.112009
- Some reviews:
 - World Scientific, 2022
 - physics, Nature volume 560, pages 41–48 (2018)

Study of using a DANN to reduce bias in ICARUS event filtering: <u>https://doi.org/</u>

- P. Calafiura, D. Rousseau, K. Terao, Artificial Intelligence for High Energy Physics,

- A. Radovic et al. Machine learning at the energy and intensity frontiers of particle

