
Questions and answers - Francois Drielsma Lecture

The following questions were submitted through Google Form. Some may have
been answered in the Q&A session already. Nevertheless, we request our
lecturers to provide written answers here for the benefit of those who could not
attend that session. Thank you!

Slide not specified. How do you approach attaching an uncertainty on, say, a tag
score from ParticleNet?

Question for Javier, please forward it to him.

Slide not specified. I'm wondering if your training dataset is from synthetic data
or real observations/data with hand-labeling? If they are synthetic data, could you
tell me the trained model performance in the real data--if there is a discrepancy,
could you introduce how do you improve the robustness of the model trained on
synthetic data? If they are real observations, could you let me know the
approximated training set size and how does the size affect the model
performance (i.e. how do you choose the current data set size and do you think
increasing the set size would increase the performance or not?)

I will answer assuming this question pertains to the GNN-based clustering in LArTPCs,
although my answer is mostly generic and applies to most supervised-learning tasks.
The training dataset is synthetic; it consists of rasterized images of charged particle
energy depositions in liquid argon, as simulated with Geant4. The validation procedure
on data is similar to the one that one would use with traditional (read non-ML)
reconstruction algorithms. It consists of evaluating well understood distributions on
simulation and data, comparing them and looking for discrepancies. These metrics
include but are not limited to:

- Momentum distribution of Michel decay electrons
- Pi0 invariant mass distribution
- Hand-labeled real data (vertex, PID, range, etc.)

The topic of addressing performance discrepancies between simulation and data is a
very broad and interesting one. Generally, it stems from a legitimate difference between
simulation and data, which should be addressed as much as possible with an
appropriate suite of calibration targets. For what remains (calibration is never perfect),
another way to mitigate them is by design, i.e. by engineering a reconstruction chain
which is mostly insensitive to simulation details by making it perform generic tasks. For
instance, an algorithm which does image classification on neutrino images is much



more sensitive to changes in the kinematics distribution of the neutrinos in the
simulation than an algorithm which does geometric tasks such as particle clustering,
individual particle ID, etc. Another potential way to address them is by enforcing that
your network does not learn features which are specific to the simulation, e.g. by using
domain adversarial training (https://arxiv.org/pdf/1505.07818.pdf). The field of trying to
solve the issue discussed here is called “domain adaptation” and there’s a lot of
literature relating to this online, if you’re interested.

Slide 53. On this slide, I did not get why we are using Bell number here? Is there
any other way we can find the number of possible partitions of a set of these
objects?

The nth Bell number is simply the mathematical answer to the combinatorics question of
“how many ways can I partition a set of N objects”? Wikipedia has a nice visual
representation of all possible partitions of 5 objects (52 possibilities). The answer to that
question is not task specific, there is no other way to find the number of possible
partitions of a set. The issue with the number is how quickly it grows, which makes
picking the best possible partition a tricky task that cannot be brute-forced, i.e. it is not
practical to evaluate the partition score of all possible partitions.

https://arxiv.org/pdf/1505.07818.pdf

