Graph Neural Networks Applications II

SLAC Summer Institute 2023

François Drielsma (SLAC)

Graphs are versatile beasts

Given a set of nodes and an incomplete set of edges between these nodes, infer the missing edges.

E.g. predict the probability that a user will be interested in a product.

Graph-level tasks

Carry a classification, regression, or clustering task over entire graphs.

E.g. predict molecules' toxicity based on the graph representing the structure of a molecule

Graphs are versatile beasts

Three **examples** at the **IF**:

1. SuperFGD pixel classification (<u>PhysRevD.103.032005</u>)

Graphs are versatile beasts

Three examples at the IF:

SuperFGD pixel classification (PhysRevD.103.032005)

LArTPC particle aggregation (PhysRevD.104.072004)

Graphs are versatile beasts

Three **examples** at the **IF**:

- 1. SuperFGD pixel classification (<u>PhysRevD.103.032005</u>)
- 2. LArTPC particle aggregation (<u>PhysRevD.104.072004</u>)

>3.

IceCube event classification (10.1109/ICMLA.2018.00064)

Pixel Classification in T2K's SuperFGD

T2K's Super Fine-Grained Detector (SuperFGD)

Graph Neural Networks at the Intensity Frontier, F. Drielsma (SLAC)

Tomographic Reconstruction

Input: set of three 2D projections

Tomographic Reconstruction

Input: set of three 2D projections

Tomographic reconstruction: make 3D **voxels**

Input: set of three 2D projections

Tomographic reconstruction: make 3D **voxels**

Input: set of three 2D projections

Tomographic reconstruction: make 3D **voxels**

Task: Classify individual voxels into classes, i.e. semantic segmentation

Could use a **Dense 3D CNN**, but... images are **very sparse**

Graphs are a more efficient representation of sparse images

Graph: K nodes + N edges

Graph Construction

Which **edges** do we **need**?

Graph Construction

we **need**? Given a **radius**, *r*, define **neighborhood** of node i

> Picked to be **1.75 cm** ~ distance between two **corner-touching** voxel centers (1x1x1 cm³ cubes)

Graph Construction

Which **edges** do we **need**?

Given a **radius**, *r*, define **neighborhood** of node i

Build **undirected edges** between node and its **neighbors**,

$$\{e_{ij}\}_{j\in\mathcal{N}(i)}$$

17

Graph Construction

Which **edges** do we **need**?

Given a **radius**, *r*, define **neighborhood** of node i

Build **undirected edges** between node and its **neighbors**,

$$\{e_{ij}\}_{j\in\mathcal{N}(i)}$$

Repeat for all nodes

18

Node embedding

What **information** to pass to the graph?

What **information** to pass to the graph?

Nodes (space points) are encoded as **vectors** of 25 **features**, e.g.

- Number of **photons**
- Fiber multiplicity
- Light fluctuation between planes

How is information **communicated**?

How is information **communicated**?

How is information **communicated**?

How is information **communicated**?

How is information **communicated**?

How is information **communicated**?

How is information **communicated**?

How is information **communicated**?

Example Predictions

Ground-truth labels vs predictions

Example Predictions

Ground-truth labels vs predictions

Graph Neural Networks at the Intensity Frontier, F. Drielsma (SLAC)

31

Performance

Quality metrics as a function of track multiplicity

Particle Aggregation in LArTPCs

LArTPC are at the center stage of **beam** *v* **physics** in the US

Short Baseline Neutrino program

• µBooNE, ICARUS, SBND

DUNE long-baseline experiment

- Wire: DUNE FD
- Pixel: DUNE ND-LAr

Advantages:

- **Detailed:** O(1) mm resolution, precise calorimetry
- Scalable: Up to tens of kt

Aggregation

Input: set of particle fragments formed upstream, e.g. **shower fragments**

Graph Neural Networks at the Intensity Frontier, F. Drielsma (SLAC)

Input: set of particle fragments formed upstream, e.g. shower fragments

Aggregation

Aggregation: build particles which fragments belong to

Graph Neural Networks at the Intensity Frontier, F. Drielsma (SLAC)

Aggregation

Input: set of particle fragments formed upstream, e.g. **shower fragments**

Aggregation: build **particles** which fragments belong to

Task: Find **connections** between fragments that belong to the same particle

Graph Neural Networks at the Intensity Frontier, F. Drielsma (SLAC)

37

Aggregation

Input: set of particle fragments formed upstream, e.g. **shower fragments**

Aggregation: build **particles** which fragments belong to

Task: Find **connections** between fragments that belong to the same particle

 \rightarrow Obvious graph structure

Graph Construction

Joining all possible pairs of fragments impractical

Graph Construction

Choose **natural** distance scale (γ mean free path in LAr ~20 cm)

We now **care** about both **nodes** and **edges** in the graph

We now **care** about both **nodes** and **edges** in the graph

Node features:

- Centroid
- Covariance matrix
- Start point/direction

• . . .

We now **care** about both **nodes** and **edges** in the graph

Node features:

- Centroid
- Covariance matrix
- Start point/direction

• . . .

We now **care** about both **nodes** and **edges** in the graph

Node features:

- Centroid
- Covariance matrix
- Start point/direction
- . .

Edge features:

• Displacement vector

We now **care** about both **nodes** and **edges** in the graph

Node features:

- Centroid
- Covariance matrix
- Start point/direction
- . . .

Edge features:

• Displacement vector

Two feature update steps

1. Edge update

$$\mathbf{e}'_{ij} = \phi_{\Theta}(\mathbf{x}_i, \, \mathbf{x}_j, \, \mathbf{e}_{ij})$$

Neural network Edge features
Node features

Two feature update steps

1. Edge update

$$\mathbf{e}_{ij}' = \phi_{\Theta}(\mathbf{x}_i,\,\mathbf{x}_j,\,\mathbf{e}_{ij})$$

2. Node update

$$\mathbf{m}_{ji} = \chi_\Theta(\mathbf{x}_j,\,\mathbf{e}_{ji})$$
Message of addressed from node j to node i

Two feature update steps

1. Edge update

$$\mathbf{e}_{ij}' = \phi_{\Theta}(\mathbf{x}_i,\,\mathbf{x}_j,\,\mathbf{e}_{ij})$$

2. Node update

$$egin{aligned} \mathbf{m}_{ji} &= \chi_{\Theta}ig(\mathbf{x}_{j},\,\mathbf{e}_{ji}ig) \ \mathbf{x}_{i}' &= \psi_{\Theta}ig(\mathbf{x}_{i},\,\Box_{j\in\mathcal{N}(i)}\mathbf{m}_{ji}ig) \ \mathbf{Aggregator\ function:\ mean,\ max,\ sum,\ etc.} \end{aligned}$$

Graph Neural Networks at the Intensity Frontier, F. Drielsma (SLAC)

Two feature update steps

1. Edge update

$$\mathbf{e}_{ij}' = \phi_{\Theta}(\mathbf{x}_i,\,\mathbf{x}_j,\,\mathbf{e}_{ij})$$

2. Node update

$$egin{aligned} \mathbf{m}_{ji} &= \chi_{\Theta}ig(\mathbf{x}_{j},\,\mathbf{e}_{ji}ig) \ \mathbf{x}_{i}' &= \psi_{\Theta}(\mathbf{x}_{i},\,\Box_{j\in\mathcal{N}(i)}\mathbf{m}_{ji}ig) \end{aligned}$$

Repeat **n** times (depth)

Graph Neural Networks at the Intensity Frontier, F. Drielsma (SLAC)

Graph Objective

Output: edge scores, s_{ii}

Goal: assign edge labels

$$a_{ij}=\delta_{g_i,g_j}$$

g_i the group of fragment i.

Graph Objective

Output: edge scores, s_{ii}

Goal: assign edge labels

$$a_{ij}=\delta_{g_i,g_j}$$

g_i the group of fragment i.

Loss: cross-entropy

$$egin{split} \mathcal{L} = -rac{1}{N_e} \sum_{(i,j) \in E} \left[a_{ij} \ln(s_{ij})
ight. \ &+ (1-a_{ij}) \ln(1-s_{ij})
ight] \end{split}$$

500

400

450

Find connected components and it's a done deal? Not quite...

Edge Selection

The GNN gives you a list of **edge scores**, not a partition

Edge scores

Edge Selection

Brute-force try all partitions?

Absolutely not...

Bell number: number of possible partition of a set of N objects

- $B_8 \sim 4140$ permutations
- $B_{20} \sim 5 \times 10^{13}$ permutations
- . .
- Could be hundreds of fragments

Edge scores

Instead, **iterate:**

Edge Selection

 Compute partition loss for the empty graph Empty graph

 $L \simeq 15.35$

Instead, iterate:

Edge Selection

- Compute partition loss for the empty graph
- 2. Add the **most likely edge**, compute loss again
- 3. If $L_{n+1} < L_n$, update partition

- compute loss again
- If $L_{n+1} < L_n$, update partition 3.
- Repeat until the next best 4. edge has $s_{ii} < 0.5$

56

Instead, iterate:

- Compute partition **loss** for 1. the empty graph
- 2. Add the most likely edge,

 $L \simeq 10.95$

Second edge

Edge Selection

Instead, **iterate**:

- Compute partition loss for the empty graph
- 2. Add the **most likely edge**, compute loss again
- 3. If $L_{n+1} < L_n$, update partition
- 4. Repeat until the next best edge has $s_{ij} < 0.5$

 $L \simeq 2.13$

- 3. If $L_{n+1} < L_n$, update partition
- Repeat until the next best 4. edge has $s_{ii} < 0.5$

Better than edge thresholding!

Instead, iterate:

- Compute partition loss for the empty graph
- 2. Add the most likely edge, compute loss again

 $L \simeq 3.92$

Edge Selection

This automatically gets rid of spurious positive edges!

Quantifying clustering accuracy is not trivial

• There is no single-voxel accuracy (cluster ID is not fixed)

Three metrics we use:

• Efficiency:

$$\circ rac{1}{N_t} \sum_i^{N_t} \max_j \#(t_i \cap c_j) / \# t_i$$

Quantifying clustering accuracy is not trivial

• There is no single-voxel accuracy (cluster ID is not fixed)

Three metrics we use:

• Efficiency:

$$\circ rac{1}{N_t} \sum_i^{N_t} \max_j \#(t_i \cap c_j) / \# t_i$$

• Purity:

$$\circ rac{1}{N_r} \sum_j^{N_r} \max_i \#(t_i \cap c_j) / \#c_j$$

Clustering Metrics

Quantifying clustering accuracy is not trivial

• There is no single-voxel accuracy (cluster ID is not fixed)

G

a

C.

Ρ

a

Three metrics we use:

• Efficiency:

$$\circ rac{1}{N_t} \sum_i^{N_t} \max_j \#(t_i \cap c_j) / \# t_i$$

$$\circ rac{1}{N_r} \sum_j^{N_r} \max_i \#(t_i \cap c_j) / \# c_j$$

• Adjusted Rand Index (ARI)

Agreement:
$$a, d$$
Disagreement: b, c

DIDO

$$\frac{d(r,0)}{a+b+c+d}$$

$$ARI = \frac{RI - E(RI)}{1 - E(RI)}$$

a+d

Node encoding: hand-engineered or automatic?

Node encoding: automatic or hand-engineered?

Model selection: how many layers do we need?

Target selection: What are we trying to predict?

Target selection: What are we trying to predict?

Can be **repurposed** for other aggregation tasks, e.g. **interactions**

Interaction Clustering Performance

Whole Event Classification in IceCube

IceCube Detector

IceCube Events

Graph Neural Networks at the Intensity Frontier, F. Drielsma (SLAC)

Signal vs Background Separation

Data Representation

CNNs not the best choice for this data:

- Hexagonal and irregular layout
- DOM **pitch** different in x, y and z
- DeepCore strings

77

Data Representation

CNNs not the best choice for this data:

- Hexagonal and irregular layout
- DOM **pitch** different in x, y and z
- **DeepCore** strings

Graphs can accommodate all this!

Node features:

- Position (x, y, z)
- Total PE (first hit, all hits)
- First time over threshold

Graph Representation

Node features:

- Position (x, y, z)
- Total PE (first hit, all hits)
- First time over threshold

Edge set:

• Complete, weighted graph

$$d_{ij} = \exp(-||\mathbf{x}_j - \mathbf{x}_i||^2/\sigma^2)$$

Weight prop. to distance

Node features:

- Position (x, y, z)
- Total PE (first hit, all hits)
- First time over threshold

Edge set:

• Complete, weighted graph

$$d_{ij} = \exp(-||\mathbf{x}_j - \mathbf{x}_i||^2/\sigma^2)$$
 $a_{ij} = rac{\exp(-d_{ij})}{\sum_k \exp(-d_{ik})}$ Adjacence (normalized)

Adjacency matrix element normalized in [0, 1])

Feature extraction

Graph convolutions:

N times

$\mathbf{GConv}(\mathbf{X}^{(t)}) = [\mathbf{AX}^{(t)}, \mathbf{X}^{(t)}]\mathbf{W}^{(t)} + \mathbf{b}^{(t)}$

Activation:

 $egin{aligned} \mathbf{X}^{(t+1)} &= [\mathbf{ReLU}(\mathbf{GConv}(\mathbf{X}^{(t)})), \ \mathbf{GConv}(\mathbf{X}^{(t)})] \end{aligned}$

Graph convolutions:

 $\mathbf{GConv}(\mathbf{X}^{(t)}) = [\mathbf{A}\mathbf{X}^{(t)}, \mathbf{X}^{(t)}]\mathbf{W}^{(t)} + \mathbf{b}^{(t)}$

Activation:

 $egin{aligned} \mathbf{X}^{(t+1)} &= [\mathbf{ReLU}(\mathbf{GConv}(\mathbf{X}^{(t)})), \ \mathbf{GConv}(\mathbf{X}^{(t)})] \end{aligned}$

Pooling:

$$\mathbf{x}^{(\text{pool})} = \sum_{i=1}^{n} \mathbf{X}_{i}^{(T)}$$

$$\hat{y} = \text{Sigmoid}(\mathbf{x}^{\text{pool}} \cdot \mathbf{w}^{\text{pool}} + b^{\text{pool}})$$

Graph Neural Networks at the Intensity Frontier, F. Drielsma (SLAC)

Graph-wide score in [0,1]

Input

Hidden layer

Background Rejection Performance

Graph Neural Networks at the Intensity Frontier, F. Drielsma (SLAC)

Conclusions

Graphs can represent anything, way beyond rasterized images

- Endless applications in HEP and the Intensity Frontier
- We've barely scratched the surface! **Exciting times...**

