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Graphs are versatile beasts

Three examples at the IF:
1. SuperFGD pixel classification 

(PhysRevD.103.032005)

2. LArTPC particle aggregation 
(PhysRevD.104.072004)

3. IceCube event classification 
(10.1109/ICMLA.2018.00064)

Source

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.032005
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004
https://ieeexplore.ieee.org/document/8614089
https://blog.dataiku.com/graph-neural-networks-part-three


Pixel Classification in T2K’s SuperFGD



T2K’s Super Fine-Grained Detector (SuperFGD)
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56 × 184 × 192 1cm3 cubes
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2D projections
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Tomographic Reconstruction
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Input: set of three    
2D projections

Tomographic 
reconstruction:    
make 3D voxels

Task: Classify 
individual voxels into 
classes, i.e. semantic 
segmentation
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Could use a Dense 3D CNN, but… images are very sparse

~99.98 % empty!
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Graphs are a more efficient representation of sparse images
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Crosstalk

TrackWhich edges do         
we need?

Given a radius,   , define  
neighborhood of node i

i

Picked to be 1.75 cm ~ distance 
between two corner-touching 
voxel centers (1x1x1 cm3 cubes)
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Which edges do         
we need?

Given a radius,   , define  
neighborhood of node i

Build undirected edges 
between node and its 
neighbors,

Crosstalk

Track

i
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Crosstalk

TrackWhich edges do         
we need?

Given a radius,   , define  
neighborhood of node i

Build undirected edges 
between node and its 
neighbors,

Repeat for all nodes
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pass to the graph? Crosstalk

Track



Node embedding
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What information to 
pass to the graph?

Nodes (space points) 
are encoded as vectors 
of 25 features, e.g.
● Number of photons
● Fiber multiplicity
● Light fluctuation 

between planes
● . . .

Crosstalk

Track
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How is information communicated? 
● Neighborhood = computation graph

arXiv:1706.02216

https://arxiv.org/abs/1706.02216


Graph Convolutions (Graph-SAGE)

21Graph Neural Networks at the Intensity Frontier, F. Drielsma (SLAC)

How is information communicated? 
● Neighborhood = computation graph

arXiv:1706.02216

https://arxiv.org/abs/1706.02216


Graph Convolutions (Graph-SAGE)

22Graph Neural Networks at the Intensity Frontier, F. Drielsma (SLAC)

How is information communicated? 
● Neighborhood = computation graph

arXiv:1706.02216

https://arxiv.org/abs/1706.02216


Graph Convolutions (Graph-SAGE)

23Graph Neural Networks at the Intensity Frontier, F. Drielsma (SLAC)

How is information communicated? 
● Neighborhood = computation graph

arXiv:1706.02216

https://arxiv.org/abs/1706.02216
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How is information communicated? 
● Neighborhood = computation graph

arXiv:1706.02216

Shared (depth 2)

https://arxiv.org/abs/1706.02216
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How is information communicated? 
● Neighborhood = computation graph

arXiv:1706.02216arXiv:1706.02216

Shared (depth 1)

https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1706.02216


Graph Convolutions (Graph-SAGE)
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How is information communicated? 
● Neighborhood = computation graph

arXiv:1706.02216

Optimized by minimizing the 
CE loss on score outputs

https://arxiv.org/abs/1706.02216


Graph Convolutions (Graph-SAGE)
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How is information communicated? 
● Neighborhood = computation graph

arXiv:1706.02216arXiv:1706.02216

A B C

D E F

https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1706.02216


Example Predictions
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Ground-truth labels vs predictions

Ground-truth Predictions
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Ground-truth labels vs predictions

uth labels vsGround-truth MistakesGround-truth



Performance
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Quality metrics as a function of track multiplicity

Efficiency Purity



Particle Aggregation in LArTPCs



Liquid Argon Time-Projection Chambers

33

LArTPC are at the center stage                 
of beam 𝜈 physics in the US

Short Baseline Neutrino program
● μBooNE, ICARUS, SBND

DUNE long-baseline experiment
● Wire: DUNE FD
● Pixel: DUNE ND-LAr

Advantages:
● Detailed: O(1) mm resolution, 

precise calorimetry
● Scalable: Up to tens of kt

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)
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fragments formed upstream, 
e.g. shower fragments
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Input: set of particle 
fragments formed upstream, 
e.g. shower fragments

Aggregation: build particles 
which fragments belong to

Task: Find connections 
between fragments that 
belong to the same particle

→ Obvious graph structure



Graph Construction
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Joining all possible pairs of fragments impractical
Complete graph
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Choose natural distance scale (γ mean free path in LAr ~20 cm)

Restriction: 150 cm

Complete graph
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We now care about both nodes 
and edges in the graph
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We now care about both nodes 
and edges in the graph

Node features:
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Message passing
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Two feature update steps

1. Edge update

Neural network

Node features

Edge features
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Two feature update steps

1. Edge update

2. Node update

Message of addressed from node j to node i



Message passing
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Two feature update steps

1. Edge update

2. Node update

Aggregator function: mean, max, sum, etc.



Message passing
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Two feature update steps

1. Edge update

2. Node update

Repeat n times (depth) 



Graph Objective
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Output: edge scores, sij

Goal: assign edge labels

gi the group of fragment i.
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Output: edge scores, sij

Goal: assign edge labels

gi the group of fragment i.

Loss: cross-entropy



Graph Construction
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Find connected components and it’s a done deal? Not quite…



Edge Selection
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The GNN gives you a list of edge 
scores, not a partition

For the best partition, ĝ, we must 
select edges which minimizes 
the partition CE loss

Classification at the 
partition level!
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Brute-force try all partitions?

Absolutely not…

Bell number: number of possible 
partition of a set of N objects

● B8 ~ 4140 permutations
● B20 ~ 5 x 10^13 permutations
● . . .
● Could be hundreds of fragments

https://en.wikipedia.org/wiki/Bell_number
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Instead, iterate:

1. Compute partition loss for 
the empty graph
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2. Add the most likely edge, 
compute loss again

3. If Ln+1 < Ln, update partition
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Instead, iterate:

1. Compute partition loss for   
the empty graph

2. Add the most likely edge, 
compute loss again

3. If Ln+1 < Ln, update partition
4. Repeat until the next best 

edge has sij < 0.5
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Instead, iterate:

1. Compute partition loss for   
the empty graph

2. Add the most likely edge, 
compute loss again

3. If Ln+1 < Ln, update partition
4. Repeat until the next best 

edge has sij < 0.5

Better than edge thresholding!

 



Edge Selection
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This automatically gets rid of spurious positive edges!



Clustering Metrics
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Quantifying clustering accuracy is not trivial
● There is no single-voxel accuracy (cluster ID is not fixed)

Three metrics we use:
● Efficiency: 

○

Eff = 0.5*(5/5 + 3/5) = 0.8
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Quantifying clustering accuracy is not trivial
● There is no single-voxel accuracy (cluster ID is not fixed)

Three metrics we use:
● Efficiency: 

○

● Purity: 

○

Pur. = 0.5*(5/7 + 3/3) ~ 0.86
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Quantifying clustering accuracy is not trivial
● There is no single-voxel accuracy (cluster ID is not fixed)

Three metrics we use:
● Efficiency: 

○

● Purity: 

○  

● Adjusted Rand Index (ARI)



Shower Clustering Performance

63Graph Neural Networks at the Intensity Frontier, F. Drielsma (SLAC)



Optimization
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Node encoding: hand-engineered or automatic?

Geometric CNN
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Node encoding: automatic or hand-engineered?



Optimization
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Model selection: how to perform message passing? MLP-based

Attention-based, 
no MLP



Optimization
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Model selection: how many layers do we need?

No gain   
beyond 3 layers



Optimization
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Target selection: What are we trying to predict?
Cluster graph Forest graph
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Target selection: What are we trying to predict?



Multi-Purpose Algorithm
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Can be repurposed for other aggregation tasks, e.g. interactions



Interaction Clustering Performance
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DUNE-ND 
pile-up level!



Whole Event Classification in IceCube



IceCube Detector
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IceCube Events
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71 TeV!



Signal vs Background Separation
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Background:
Cosmic muon 
bundles

Signal:
Muon 
neutrinos

Energy deposition 
averages out

Energy deposition 
stochastic

0.6 TeV -> 100 TeV



Data Representation
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CNNs not the best 
choice for this data:

● Hexagonal and 
irregular layout 

● DOM pitch different 
in x, y and z

● DeepCore strings

71 TeV!
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CNNs not the best 
choice for this data:

● Hexagonal and 
irregular layout 

● DOM pitch different 
in x, y and z

● DeepCore strings

Graphs can 
accommodate all this! 71 TeV!



Graph Representation
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Node features:

● Position (x, y, z)
● Total PE (first hit, all hits)
● First time over threshold

71 TeV!
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Node features:

● Position (x, y, z)
● Total PE (first hit, all hits)
● First time over threshold

Edge set:

● Complete, weighted graph

71 TeV!
Weight prop. to distance
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Node features:

● Position (x, y, z)
● Total PE (first hit, all hits)
● First time over threshold

Edge set:

● Complete, weighted graph

Adjacency matrix element 
(normalized in [0, 1])



Feature extraction
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Graph convolutions:

71 TeV!

Weighted adjacency matrix

Learnable parameters
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Graph convolutions:

Activation:

71 TeV!

N
 ti

m
es
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Graph convolutions:

Activation:

Pooling:

71 TeV!

x(pool)

Graph-wide score in [0,1]

Learnable parameters



Background Rejection Performance
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S/B: ~10^-6

Baseline: cut based

CNN: ResNet-18

GNN: This work

71 TeV!



Conclusions
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Graphs can represent anything, way beyond rasterized images
● Endless applications in HEP and the Intensity Frontier

● We’ve barely scratched the surface! Exciting times…

71 TeV!


